Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpo2eqb GIF version

Theorem mpo2eqb 5846
 Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 5844. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
mpo2eqb (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mpo2eqb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm13.183 2794 . . . . . 6 (𝐶𝑉 → (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
21ralimi 2470 . . . . 5 (∀𝑦𝐵 𝐶𝑉 → ∀𝑦𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
3 ralbi 2539 . . . . 5 (∀𝑦𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)) → (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
42, 3syl 14 . . . 4 (∀𝑦𝐵 𝐶𝑉 → (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
54ralimi 2470 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴 (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
6 ralbi 2539 . . 3 (∀𝑥𝐴 (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)) → (∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
75, 6syl 14 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
8 df-mpo 5745 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
9 df-mpo 5745 . . . 4 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)}
108, 9eqeq12i 2129 . . 3 ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)})
11 eqoprab2b 5795 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)} ↔ ∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
12 pm5.32 446 . . . . . . 7 (((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
1312albii 1429 . . . . . 6 (∀𝑧((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ ∀𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
14 19.21v 1827 . . . . . 6 (∀𝑧((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
1513, 14bitr3i 185 . . . . 5 (∀𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
16152albii 1430 . . . 4 (∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
17 r2al 2429 . . . 4 (∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
1816, 17bitr4i 186 . . 3 (∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷))
1910, 11, 183bitri 205 . 2 ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷))
207, 19syl6rbbr 198 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104  ∀wal 1312   = wceq 1314   ∈ wcel 1463  ∀wral 2391  {coprab 5741   ∈ cmpo 5742 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-oprab 5744  df-mpo 5745 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator