| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgr2edg1 | GIF version | ||
| Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 8-Jun-2021.) |
| Ref | Expression |
|---|---|
| usgrf1oedg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| usgrf1oedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| umgr2edg1 | ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | usgrf1oedg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | umgr2edg 15962 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦))) |
| 4 | 3anrot 986 | . . . . . . 7 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ (𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ 𝑥 ≠ 𝑦)) | |
| 5 | df-ne 2379 | . . . . . . . 8 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
| 6 | 5 | 3anbi3i 1195 | . . . . . . 7 ⊢ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ 𝑥 ≠ 𝑦) ↔ (𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ ¬ 𝑥 = 𝑦)) |
| 7 | df-3an 983 | . . . . . . 7 ⊢ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) | |
| 8 | 4, 6, 7 | 3bitri 206 | . . . . . 6 ⊢ ((𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ ((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
| 9 | 8 | 2rexbii 2517 | . . . . 5 ⊢ (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼(𝑥 ≠ 𝑦 ∧ 𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ↔ ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
| 10 | 3, 9 | sylib 122 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦)) |
| 11 | rexanaliim 2614 | . . . . 5 ⊢ (∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) | |
| 12 | 11 | reximi 2605 | . . . 4 ⊢ (∃𝑥 ∈ dom 𝐼∃𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) ∧ ¬ 𝑥 = 𝑦) → ∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) |
| 13 | rexnalim 2497 | . . . 4 ⊢ (∃𝑥 ∈ dom 𝐼 ¬ ∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦) → ¬ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) | |
| 14 | 10, 12, 13 | 3syl 17 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦)) |
| 15 | 14 | intnand 933 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦))) |
| 16 | fveq2 5600 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐼‘𝑥) = (𝐼‘𝑦)) | |
| 17 | 16 | eleq2d 2277 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑁 ∈ (𝐼‘𝑥) ↔ 𝑁 ∈ (𝐼‘𝑦))) |
| 18 | 17 | reu4 2975 | . 2 ⊢ (∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ↔ (∃𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥) ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝑁 ∈ (𝐼‘𝑥) ∧ 𝑁 ∈ (𝐼‘𝑦)) → 𝑥 = 𝑦))) |
| 19 | 15, 18 | sylnibr 679 | 1 ⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥 ∈ dom 𝐼 𝑁 ∈ (𝐼‘𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 ∃wrex 2487 ∃!wreu 2488 {cpr 3645 dom cdm 4694 ‘cfv 5291 iEdgciedg 15773 Edgcedg 15815 UMGraphcumgr 15849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-mulcom 8063 ax-addass 8064 ax-mulass 8065 ax-distr 8066 ax-i2m1 8067 ax-1rid 8069 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-iord 4432 df-on 4434 df-suc 4437 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-1o 6527 df-2o 6528 df-er 6645 df-en 6853 df-sub 8282 df-inn 9074 df-2 9132 df-3 9133 df-4 9134 df-5 9135 df-6 9136 df-7 9137 df-8 9138 df-9 9139 df-n0 9333 df-dec 9542 df-ndx 12996 df-slot 12997 df-base 12999 df-edgf 15765 df-vtx 15774 df-iedg 15775 df-edg 15816 df-uhgrm 15826 df-upgren 15850 df-umgren 15851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |