ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgr2edgneu GIF version

Theorem umgr2edgneu 15975
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex, analogous to usgr2edg1 15973. Lemma for theorems about friendship graphs. (Contributed by Alexander van der Vekens, 10-Dec-2017.) (Revised by AV, 9-Jan-2020.)
Hypothesis
Ref Expression
umgrvad2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr2edgneu (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥𝐸 𝑁𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁

Proof of Theorem umgr2edgneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 umgrvad2edg.e . . . . . 6 𝐸 = (Edg‘𝐺)
21umgrvad2edg 15974 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦))
3 3simpc 1001 . . . . . . . 8 ((𝑥𝑦𝑁𝑥𝑁𝑦) → (𝑁𝑥𝑁𝑦))
4 neneq 2402 . . . . . . . . 9 (𝑥𝑦 → ¬ 𝑥 = 𝑦)
543ad2ant1 1023 . . . . . . . 8 ((𝑥𝑦𝑁𝑥𝑁𝑦) → ¬ 𝑥 = 𝑦)
63, 5jca 306 . . . . . . 7 ((𝑥𝑦𝑁𝑥𝑁𝑦) → ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦))
76reximi 2607 . . . . . 6 (∃𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦) → ∃𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦))
87reximi 2607 . . . . 5 (∃𝑥𝐸𝑦𝐸 (𝑥𝑦𝑁𝑥𝑁𝑦) → ∃𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦))
92, 8syl 14 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ∃𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦))
10 rexanaliim 2616 . . . . . 6 (∃𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
1110reximi 2607 . . . . 5 (∃𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦) → ∃𝑥𝐸 ¬ ∀𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
12 rexnalim 2499 . . . . 5 (∃𝑥𝐸 ¬ ∀𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦) → ¬ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
1311, 12syl 14 . . . 4 (∃𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) ∧ ¬ 𝑥 = 𝑦) → ¬ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
149, 13syl 14 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦))
1514intnand 935 . 2 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ (∃𝑥𝐸 𝑁𝑥 ∧ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦)))
16 eleq2w 2271 . . 3 (𝑥 = 𝑦 → (𝑁𝑥𝑁𝑦))
1716reu4 2977 . 2 (∃!𝑥𝐸 𝑁𝑥 ↔ (∃𝑥𝐸 𝑁𝑥 ∧ ∀𝑥𝐸𝑦𝐸 ((𝑁𝑥𝑁𝑦) → 𝑥 = 𝑦)))
1815, 17sylnibr 681 1 (((𝐺 ∈ UMGraph ∧ 𝐴𝐵) ∧ ({𝑁, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝑁} ∈ 𝐸)) → ¬ ∃!𝑥𝐸 𝑁𝑥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wne 2380  wral 2488  wrex 2489  ∃!wreu 2490  {cpr 3647  cfv 5294  Edgcedg 15823  UMGraphcumgr 15857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-1o 6532  df-2o 6533  df-er 6650  df-en 6858  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-edg 15824  df-umgren 15859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator