ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex GIF version

Theorem suplociccex 14945
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8116 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1 (𝜑𝐵 ∈ ℝ)
suplocicc.2 (𝜑𝐶 ∈ ℝ)
suplocicc.bc (𝜑𝐵 < 𝐶)
suplocicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
suplocicc.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocicc.l (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
Assertion
Ref Expression
suplociccex (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem suplociccex
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3 (𝜑𝐵 ∈ ℝ)
2 suplocicc.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 suplocicc.bc . . 3 (𝜑𝐵 < 𝐶)
4 suplocicc.3 . . 3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 suplocicc.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
6 suplocicc.l . . 3 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
71, 2, 3, 4, 5, 6suplociccreex 14944 . 2 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 simprl 529 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℝ)
9 eleq1w 2257 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
109cbvexv 1933 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑢 𝑢𝐴)
115, 10sylib 122 . . . . . 6 (𝜑 → ∃𝑢 𝑢𝐴)
1211adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∃𝑢 𝑢𝐴)
131ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵 ∈ ℝ)
14 iccssre 10047 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
151, 2, 14syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
164, 15sstrd 3194 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1716ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐴 ⊆ ℝ)
18 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢𝐴)
1917, 18sseldd 3185 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢 ∈ ℝ)
208adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑥 ∈ ℝ)
2113rexrd 8093 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵 ∈ ℝ*)
222rexrd 8093 . . . . . . . 8 (𝜑𝐶 ∈ ℝ*)
2322ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐶 ∈ ℝ*)
244ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
2524, 18sseldd 3185 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢 ∈ (𝐵[,]𝐶))
26 iccgelb 10024 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑢 ∈ (𝐵[,]𝐶)) → 𝐵𝑢)
2721, 23, 25, 26syl3anc 1249 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵𝑢)
28 breq2 4038 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 < 𝑦𝑥 < 𝑢))
2928notbid 668 . . . . . . . 8 (𝑦 = 𝑢 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑢))
30 simprrl 539 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
3130adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
3229, 31, 18rspcdva 2873 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → ¬ 𝑥 < 𝑢)
3319, 20, 32nltled 8164 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢𝑥)
3413, 19, 20, 27, 33letrd 8167 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵𝑥)
3512, 34exlimddv 1913 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝐵𝑥)
36 simpl 109 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝜑)
37 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
388, 30, 373jca 1179 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
39 lttri3 8123 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4039adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4140eqsupti 7071 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥))
4236, 38, 41sylc 62 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) = 𝑥)
431rexrd 8093 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
4443adantr 276 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐵 ∈ ℝ*)
4522adantr 276 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐶 ∈ ℝ*)
464sselda 3184 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ∈ (𝐵[,]𝐶))
47 iccleub 10023 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ (𝐵[,]𝐶)) → 𝑧𝐶)
4844, 45, 46, 47syl3anc 1249 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧𝐶)
4948ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑧𝐴 𝑧𝐶)
507, 16, 2suprleubex 8998 . . . . . . 7 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑧𝐴 𝑧𝐶))
5149, 50mpbird 167 . . . . . 6 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
5251adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) ≤ 𝐶)
5342, 52eqbrtrrd 4058 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥𝐶)
548, 35, 533jca 1179 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶))
55 elicc2 10030 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
561, 2, 55syl2anc 411 . . . 4 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
5756adantr 276 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
5854, 57mpbird 167 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ (𝐵[,]𝐶))
59 ssralv 3248 . . . . . 6 ((𝐵[,]𝐶) ⊆ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6015, 59syl 14 . . . . 5 (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6160adantr 276 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6237, 61mpd 13 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
6330, 62jca 306 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
647, 58, 63reximssdv 2601 1 (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  wss 3157   class class class wbr 4034  (class class class)co 5925  supcsup 7057  cr 7895  *cxr 8077   < clt 8078  cle 8079  [,]cicc 9983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-pre-suploc 8017
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-icc 9987  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  dedekindicclemlub  14949
  Copyright terms: Public domain W3C validator