ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex GIF version

Theorem suplociccex 14500
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8048 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1 (𝜑𝐵 ∈ ℝ)
suplocicc.2 (𝜑𝐶 ∈ ℝ)
suplocicc.bc (𝜑𝐵 < 𝐶)
suplocicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
suplocicc.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocicc.l (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
Assertion
Ref Expression
suplociccex (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem suplociccex
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3 (𝜑𝐵 ∈ ℝ)
2 suplocicc.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 suplocicc.bc . . 3 (𝜑𝐵 < 𝐶)
4 suplocicc.3 . . 3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 suplocicc.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
6 suplocicc.l . . 3 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
71, 2, 3, 4, 5, 6suplociccreex 14499 . 2 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 simprl 529 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℝ)
9 eleq1w 2250 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
109cbvexv 1930 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑢 𝑢𝐴)
115, 10sylib 122 . . . . . 6 (𝜑 → ∃𝑢 𝑢𝐴)
1211adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∃𝑢 𝑢𝐴)
131ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵 ∈ ℝ)
14 iccssre 9973 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
151, 2, 14syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
164, 15sstrd 3180 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1716ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐴 ⊆ ℝ)
18 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢𝐴)
1917, 18sseldd 3171 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢 ∈ ℝ)
208adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑥 ∈ ℝ)
2113rexrd 8025 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵 ∈ ℝ*)
222rexrd 8025 . . . . . . . 8 (𝜑𝐶 ∈ ℝ*)
2322ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐶 ∈ ℝ*)
244ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
2524, 18sseldd 3171 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢 ∈ (𝐵[,]𝐶))
26 iccgelb 9950 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑢 ∈ (𝐵[,]𝐶)) → 𝐵𝑢)
2721, 23, 25, 26syl3anc 1249 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵𝑢)
28 breq2 4022 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 < 𝑦𝑥 < 𝑢))
2928notbid 668 . . . . . . . 8 (𝑦 = 𝑢 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑢))
30 simprrl 539 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
3130adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
3229, 31, 18rspcdva 2861 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → ¬ 𝑥 < 𝑢)
3319, 20, 32nltled 8096 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢𝑥)
3413, 19, 20, 27, 33letrd 8099 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵𝑥)
3512, 34exlimddv 1910 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝐵𝑥)
36 simpl 109 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝜑)
37 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
388, 30, 373jca 1179 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
39 lttri3 8055 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4039adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4140eqsupti 7013 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥))
4236, 38, 41sylc 62 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) = 𝑥)
431rexrd 8025 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
4443adantr 276 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐵 ∈ ℝ*)
4522adantr 276 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐶 ∈ ℝ*)
464sselda 3170 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ∈ (𝐵[,]𝐶))
47 iccleub 9949 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ (𝐵[,]𝐶)) → 𝑧𝐶)
4844, 45, 46, 47syl3anc 1249 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧𝐶)
4948ralrimiva 2563 . . . . . . 7 (𝜑 → ∀𝑧𝐴 𝑧𝐶)
507, 16, 2suprleubex 8929 . . . . . . 7 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑧𝐴 𝑧𝐶))
5149, 50mpbird 167 . . . . . 6 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
5251adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) ≤ 𝐶)
5342, 52eqbrtrrd 4042 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥𝐶)
548, 35, 533jca 1179 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶))
55 elicc2 9956 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
561, 2, 55syl2anc 411 . . . 4 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
5756adantr 276 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
5854, 57mpbird 167 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ (𝐵[,]𝐶))
59 ssralv 3234 . . . . . 6 ((𝐵[,]𝐶) ⊆ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6015, 59syl 14 . . . . 5 (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6160adantr 276 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6237, 61mpd 13 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
6330, 62jca 306 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
647, 58, 63reximssdv 2594 1 (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wex 1503  wcel 2160  wral 2468  wrex 2469  wss 3144   class class class wbr 4018  (class class class)co 5891  supcsup 6999  cr 7828  *cxr 8009   < clt 8010  cle 8011  [,]cicc 9909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949  ax-pre-suploc 7950
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-sup 7001  df-inf 7002  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-rp 9672  df-icc 9913  df-seqfrec 10464  df-exp 10538  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026
This theorem is referenced by:  dedekindicclemlub  14504
  Copyright terms: Public domain W3C validator