Step | Hyp | Ref
| Expression |
1 | | suplocicc.1 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
2 | | suplocicc.2 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℝ) |
3 | | suplocicc.bc |
. . 3
⊢ (𝜑 → 𝐵 < 𝐶) |
4 | | suplocicc.3 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
5 | | suplocicc.m |
. . 3
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
6 | | suplocicc.l |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
7 | 1, 2, 3, 4, 5, 6 | suplociccreex 13242 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
8 | | simprl 521 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℝ) |
9 | | eleq1w 2227 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) |
10 | 9 | cbvexv 1906 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑢 𝑢 ∈ 𝐴) |
11 | 5, 10 | sylib 121 |
. . . . . 6
⊢ (𝜑 → ∃𝑢 𝑢 ∈ 𝐴) |
12 | 11 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∃𝑢 𝑢 ∈ 𝐴) |
13 | 1 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐵 ∈ ℝ) |
14 | | iccssre 9891 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) |
15 | 1, 2, 14 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵[,]𝐶) ⊆ ℝ) |
16 | 4, 15 | sstrd 3152 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
17 | 16 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
18 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
19 | 17, 18 | sseldd 3143 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ ℝ) |
20 | 8 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑥 ∈ ℝ) |
21 | 13 | rexrd 7948 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
22 | 2 | rexrd 7948 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
23 | 22 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐶 ∈
ℝ*) |
24 | 4 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐴 ⊆ (𝐵[,]𝐶)) |
25 | 24, 18 | sseldd 3143 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ (𝐵[,]𝐶)) |
26 | | iccgelb 9868 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑢
∈ (𝐵[,]𝐶)) → 𝐵 ≤ 𝑢) |
27 | 21, 23, 25, 26 | syl3anc 1228 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐵 ≤ 𝑢) |
28 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑥 < 𝑦 ↔ 𝑥 < 𝑢)) |
29 | 28 | notbid 657 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑢)) |
30 | | simprrl 529 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦) |
31 | 30 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦) |
32 | 29, 31, 18 | rspcdva 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → ¬ 𝑥 < 𝑢) |
33 | 19, 20, 32 | nltled 8019 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ≤ 𝑥) |
34 | 13, 19, 20, 27, 33 | letrd 8022 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐵 ≤ 𝑥) |
35 | 12, 34 | exlimddv 1886 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝐵 ≤ 𝑥) |
36 | | simpl 108 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝜑) |
37 | | simprrr 530 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
38 | 8, 30, 37 | 3jca 1167 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
39 | | lttri3 7978 |
. . . . . . . 8
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
40 | 39 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
41 | 40 | eqsupti 6961 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
42 | 36, 38, 41 | sylc 62 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) = 𝑥) |
43 | 1 | rexrd 7948 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
44 | 43 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
45 | 22 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈
ℝ*) |
46 | 4 | sselda 3142 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝐵[,]𝐶)) |
47 | | iccleub 9867 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑧
∈ (𝐵[,]𝐶)) → 𝑧 ≤ 𝐶) |
48 | 44, 45, 46, 47 | syl3anc 1228 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐶) |
49 | 48 | ralrimiva 2539 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐶) |
50 | 7, 16, 2 | suprleubex 8849 |
. . . . . . 7
⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐶)) |
51 | 49, 50 | mpbird 166 |
. . . . . 6
⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶) |
52 | 51 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) ≤ 𝐶) |
53 | 42, 52 | eqbrtrrd 4006 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ≤ 𝐶) |
54 | 8, 35, 53 | 3jca 1167 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶)) |
55 | | elicc2 9874 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶))) |
56 | 1, 2, 55 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶))) |
57 | 56 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶))) |
58 | 54, 57 | mpbird 166 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ (𝐵[,]𝐶)) |
59 | | ssralv 3206 |
. . . . . 6
⊢ ((𝐵[,]𝐶) ⊆ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
60 | 15, 59 | syl 14 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
61 | 60 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
62 | 37, 61 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
63 | 30, 62 | jca 304 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
64 | 7, 58, 63 | reximssdv 2570 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |