| Step | Hyp | Ref
| Expression |
| 1 | | suplocicc.1 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 2 | | suplocicc.2 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 3 | | suplocicc.bc |
. . 3
⊢ (𝜑 → 𝐵 < 𝐶) |
| 4 | | suplocicc.3 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
| 5 | | suplocicc.m |
. . 3
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) |
| 6 | | suplocicc.l |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 7 | 1, 2, 3, 4, 5, 6 | suplociccreex 14860 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 8 | | simprl 529 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℝ) |
| 9 | | eleq1w 2257 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) |
| 10 | 9 | cbvexv 1933 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑢 𝑢 ∈ 𝐴) |
| 11 | 5, 10 | sylib 122 |
. . . . . 6
⊢ (𝜑 → ∃𝑢 𝑢 ∈ 𝐴) |
| 12 | 11 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∃𝑢 𝑢 ∈ 𝐴) |
| 13 | 1 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 14 | | iccssre 10030 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) |
| 15 | 1, 2, 14 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵[,]𝐶) ⊆ ℝ) |
| 16 | 4, 15 | sstrd 3193 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐴 ⊆ ℝ) |
| 18 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ 𝐴) |
| 19 | 17, 18 | sseldd 3184 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ ℝ) |
| 20 | 8 | adantr 276 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 21 | 13 | rexrd 8076 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
| 22 | 2 | rexrd 8076 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
| 23 | 22 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐶 ∈
ℝ*) |
| 24 | 4 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐴 ⊆ (𝐵[,]𝐶)) |
| 25 | 24, 18 | sseldd 3184 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ∈ (𝐵[,]𝐶)) |
| 26 | | iccgelb 10007 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑢
∈ (𝐵[,]𝐶)) → 𝐵 ≤ 𝑢) |
| 27 | 21, 23, 25, 26 | syl3anc 1249 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐵 ≤ 𝑢) |
| 28 | | breq2 4037 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑥 < 𝑦 ↔ 𝑥 < 𝑢)) |
| 29 | 28 | notbid 668 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑢)) |
| 30 | | simprrl 539 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦) |
| 31 | 30 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦) |
| 32 | 29, 31, 18 | rspcdva 2873 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → ¬ 𝑥 < 𝑢) |
| 33 | 19, 20, 32 | nltled 8147 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝑢 ≤ 𝑥) |
| 34 | 13, 19, 20, 27, 33 | letrd 8150 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) ∧ 𝑢 ∈ 𝐴) → 𝐵 ≤ 𝑥) |
| 35 | 12, 34 | exlimddv 1913 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝐵 ≤ 𝑥) |
| 36 | | simpl 109 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝜑) |
| 37 | | simprrr 540 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 38 | 8, 30, 37 | 3jca 1179 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 39 | | lttri3 8106 |
. . . . . . . 8
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 40 | 39 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 41 | 40 | eqsupti 7062 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
| 42 | 36, 38, 41 | sylc 62 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) = 𝑥) |
| 43 | 1 | rexrd 8076 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 44 | 43 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
| 45 | 22 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈
ℝ*) |
| 46 | 4 | sselda 3183 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ (𝐵[,]𝐶)) |
| 47 | | iccleub 10006 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑧
∈ (𝐵[,]𝐶)) → 𝑧 ≤ 𝐶) |
| 48 | 44, 45, 46, 47 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐶) |
| 49 | 48 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐶) |
| 50 | 7, 16, 2 | suprleubex 8981 |
. . . . . . 7
⊢ (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ 𝐴 𝑧 ≤ 𝐶)) |
| 51 | 49, 50 | mpbird 167 |
. . . . . 6
⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶) |
| 52 | 51 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) ≤ 𝐶) |
| 53 | 42, 52 | eqbrtrrd 4057 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ≤ 𝐶) |
| 54 | 8, 35, 53 | 3jca 1179 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶)) |
| 55 | | elicc2 10013 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶))) |
| 56 | 1, 2, 55 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶))) |
| 57 | 56 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶))) |
| 58 | 54, 57 | mpbird 167 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ (𝐵[,]𝐶)) |
| 59 | | ssralv 3247 |
. . . . . 6
⊢ ((𝐵[,]𝐶) ⊆ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 60 | 15, 59 | syl 14 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 61 | 60 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 62 | 37, 61 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 63 | 30, 62 | jca 306 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 64 | 7, 58, 63 | reximssdv 2601 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |