ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex GIF version

Theorem suplociccex 15068
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8144 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1 (𝜑𝐵 ∈ ℝ)
suplocicc.2 (𝜑𝐶 ∈ ℝ)
suplocicc.bc (𝜑𝐵 < 𝐶)
suplocicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
suplocicc.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocicc.l (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
Assertion
Ref Expression
suplociccex (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem suplociccex
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3 (𝜑𝐵 ∈ ℝ)
2 suplocicc.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 suplocicc.bc . . 3 (𝜑𝐵 < 𝐶)
4 suplocicc.3 . . 3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 suplocicc.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
6 suplocicc.l . . 3 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
71, 2, 3, 4, 5, 6suplociccreex 15067 . 2 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 simprl 529 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℝ)
9 eleq1w 2265 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
109cbvexv 1941 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑢 𝑢𝐴)
115, 10sylib 122 . . . . . 6 (𝜑 → ∃𝑢 𝑢𝐴)
1211adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∃𝑢 𝑢𝐴)
131ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵 ∈ ℝ)
14 iccssre 10076 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
151, 2, 14syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
164, 15sstrd 3202 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1716ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐴 ⊆ ℝ)
18 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢𝐴)
1917, 18sseldd 3193 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢 ∈ ℝ)
208adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑥 ∈ ℝ)
2113rexrd 8121 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵 ∈ ℝ*)
222rexrd 8121 . . . . . . . 8 (𝜑𝐶 ∈ ℝ*)
2322ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐶 ∈ ℝ*)
244ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
2524, 18sseldd 3193 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢 ∈ (𝐵[,]𝐶))
26 iccgelb 10053 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑢 ∈ (𝐵[,]𝐶)) → 𝐵𝑢)
2721, 23, 25, 26syl3anc 1249 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵𝑢)
28 breq2 4047 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 < 𝑦𝑥 < 𝑢))
2928notbid 668 . . . . . . . 8 (𝑦 = 𝑢 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑢))
30 simprrl 539 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
3130adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
3229, 31, 18rspcdva 2881 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → ¬ 𝑥 < 𝑢)
3319, 20, 32nltled 8192 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢𝑥)
3413, 19, 20, 27, 33letrd 8195 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵𝑥)
3512, 34exlimddv 1921 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝐵𝑥)
36 simpl 109 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝜑)
37 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
388, 30, 373jca 1179 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
39 lttri3 8151 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4039adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4140eqsupti 7097 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥))
4236, 38, 41sylc 62 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) = 𝑥)
431rexrd 8121 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
4443adantr 276 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐵 ∈ ℝ*)
4522adantr 276 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐶 ∈ ℝ*)
464sselda 3192 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ∈ (𝐵[,]𝐶))
47 iccleub 10052 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ (𝐵[,]𝐶)) → 𝑧𝐶)
4844, 45, 46, 47syl3anc 1249 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧𝐶)
4948ralrimiva 2578 . . . . . . 7 (𝜑 → ∀𝑧𝐴 𝑧𝐶)
507, 16, 2suprleubex 9026 . . . . . . 7 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑧𝐴 𝑧𝐶))
5149, 50mpbird 167 . . . . . 6 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
5251adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) ≤ 𝐶)
5342, 52eqbrtrrd 4067 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥𝐶)
548, 35, 533jca 1179 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶))
55 elicc2 10059 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
561, 2, 55syl2anc 411 . . . 4 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
5756adantr 276 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
5854, 57mpbird 167 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ (𝐵[,]𝐶))
59 ssralv 3256 . . . . . 6 ((𝐵[,]𝐶) ⊆ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6015, 59syl 14 . . . . 5 (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6160adantr 276 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6237, 61mpd 13 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
6330, 62jca 306 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
647, 58, 63reximssdv 2609 1 (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1372  wex 1514  wcel 2175  wral 2483  wrex 2484  wss 3165   class class class wbr 4043  (class class class)co 5943  supcsup 7083  cr 7923  *cxr 8105   < clt 8106  cle 8107  [,]cicc 10012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044  ax-pre-suploc 8045
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-icc 10016  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281
This theorem is referenced by:  dedekindicclemlub  15072
  Copyright terms: Public domain W3C validator