ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplociccex GIF version

Theorem suplociccex 13770
Description: An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 8020 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
Hypotheses
Ref Expression
suplocicc.1 (𝜑𝐵 ∈ ℝ)
suplocicc.2 (𝜑𝐶 ∈ ℝ)
suplocicc.bc (𝜑𝐵 < 𝐶)
suplocicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
suplocicc.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocicc.l (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
Assertion
Ref Expression
suplociccex (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem suplociccex
Dummy variables 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocicc.1 . . 3 (𝜑𝐵 ∈ ℝ)
2 suplocicc.2 . . 3 (𝜑𝐶 ∈ ℝ)
3 suplocicc.bc . . 3 (𝜑𝐵 < 𝐶)
4 suplocicc.3 . . 3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 suplocicc.m . . 3 (𝜑 → ∃𝑥 𝑥𝐴)
6 suplocicc.l . . 3 (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))
71, 2, 3, 4, 5, 6suplociccreex 13769 . 2 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 simprl 529 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ ℝ)
9 eleq1w 2238 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥𝐴𝑢𝐴))
109cbvexv 1918 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑢 𝑢𝐴)
115, 10sylib 122 . . . . . 6 (𝜑 → ∃𝑢 𝑢𝐴)
1211adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∃𝑢 𝑢𝐴)
131ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵 ∈ ℝ)
14 iccssre 9942 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
151, 2, 14syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
164, 15sstrd 3165 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
1716ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐴 ⊆ ℝ)
18 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢𝐴)
1917, 18sseldd 3156 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢 ∈ ℝ)
208adantr 276 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑥 ∈ ℝ)
2113rexrd 7997 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵 ∈ ℝ*)
222rexrd 7997 . . . . . . . 8 (𝜑𝐶 ∈ ℝ*)
2322ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐶 ∈ ℝ*)
244ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
2524, 18sseldd 3156 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢 ∈ (𝐵[,]𝐶))
26 iccgelb 9919 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑢 ∈ (𝐵[,]𝐶)) → 𝐵𝑢)
2721, 23, 25, 26syl3anc 1238 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵𝑢)
28 breq2 4004 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 < 𝑦𝑥 < 𝑢))
2928notbid 667 . . . . . . . 8 (𝑦 = 𝑢 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < 𝑢))
30 simprrl 539 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
3130adantr 276 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → ∀𝑦𝐴 ¬ 𝑥 < 𝑦)
3229, 31, 18rspcdva 2846 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → ¬ 𝑥 < 𝑢)
3319, 20, 32nltled 8068 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝑢𝑥)
3413, 19, 20, 27, 33letrd 8071 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) ∧ 𝑢𝐴) → 𝐵𝑥)
3512, 34exlimddv 1898 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝐵𝑥)
36 simpl 109 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝜑)
37 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
388, 30, 373jca 1177 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
39 lttri3 8027 . . . . . . . 8 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4039adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4140eqsupti 6989 . . . . . 6 (𝜑 → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥))
4236, 38, 41sylc 62 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) = 𝑥)
431rexrd 7997 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
4443adantr 276 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐵 ∈ ℝ*)
4522adantr 276 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝐶 ∈ ℝ*)
464sselda 3155 . . . . . . . . 9 ((𝜑𝑧𝐴) → 𝑧 ∈ (𝐵[,]𝐶))
47 iccleub 9918 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ (𝐵[,]𝐶)) → 𝑧𝐶)
4844, 45, 46, 47syl3anc 1238 . . . . . . . 8 ((𝜑𝑧𝐴) → 𝑧𝐶)
4948ralrimiva 2550 . . . . . . 7 (𝜑 → ∀𝑧𝐴 𝑧𝐶)
507, 16, 2suprleubex 8900 . . . . . . 7 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑧𝐴 𝑧𝐶))
5149, 50mpbird 167 . . . . . 6 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
5251adantr 276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → sup(𝐴, ℝ, < ) ≤ 𝐶)
5342, 52eqbrtrrd 4024 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥𝐶)
548, 35, 533jca 1177 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶))
55 elicc2 9925 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
561, 2, 55syl2anc 411 . . . 4 (𝜑 → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
5756adantr 276 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (𝑥 ∈ (𝐵[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥𝑥𝐶)))
5854, 57mpbird 167 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → 𝑥 ∈ (𝐵[,]𝐶))
59 ssralv 3219 . . . . . 6 ((𝐵[,]𝐶) ⊆ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6015, 59syl 14 . . . . 5 (𝜑 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6160adantr 276 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
6237, 61mpd 13 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
6330, 62jca 306 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
647, 58, 63reximssdv 2581 1 (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  wss 3129   class class class wbr 4000  (class class class)co 5869  supcsup 6975  cr 7801  *cxr 7981   < clt 7982  cle 7983  [,]cicc 9878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-icc 9882  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  dedekindicclemlub  13774
  Copyright terms: Public domain W3C validator