ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemrl GIF version

Theorem suplocexprlemrl 7784
Description: Lemma for suplocexpr 7792. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemrl (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
Distinct variable groups:   𝐴,𝑟   𝑥,𝐴,𝑦   𝜑,𝑞,𝑟   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑞)

Proof of Theorem suplocexprlemrl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 suplocexprlemell 7780 . . . . . . 7 (𝑞 (1st𝐴) ↔ ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
21biimpi 120 . . . . . 6 (𝑞 (1st𝐴) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
32adantl 277 . . . . 5 (((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4 suplocexpr.m . . . . . . . . . . 11 (𝜑 → ∃𝑥 𝑥𝐴)
5 suplocexpr.ub . . . . . . . . . . 11 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
6 suplocexpr.loc . . . . . . . . . . 11 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
74, 5, 6suplocexprlemss 7782 . . . . . . . . . 10 (𝜑𝐴P)
87ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝐴P)
9 simprl 529 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠𝐴)
108, 9sseldd 3184 . . . . . . . 8 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠P)
11 prop 7542 . . . . . . . 8 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
1210, 11syl 14 . . . . . . 7 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
13 simprr 531 . . . . . . 7 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
14 prnmaxl 7555 . . . . . . 7 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞 ∈ (1st𝑠)) → ∃𝑟 ∈ (1st𝑠)𝑞 <Q 𝑟)
1512, 13, 14syl2anc 411 . . . . . 6 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑟 ∈ (1st𝑠)𝑞 <Q 𝑟)
16 ltrelnq 7432 . . . . . . . . 9 <Q ⊆ (Q × Q)
1716brel 4715 . . . . . . . 8 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
1817simprd 114 . . . . . . 7 (𝑞 <Q 𝑟𝑟Q)
1918ad2antll 491 . . . . . 6 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟Q)
20 simprr 531 . . . . . . 7 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑞 <Q 𝑟)
21 simplrl 535 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑠𝐴)
22 simprl 529 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟 ∈ (1st𝑠))
23 rspe 2546 . . . . . . . . 9 ((𝑠𝐴𝑟 ∈ (1st𝑠)) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
2421, 22, 23syl2anc 411 . . . . . . . 8 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
25 suplocexprlemell 7780 . . . . . . . 8 (𝑟 (1st𝐴) ↔ ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
2624, 25sylibr 134 . . . . . . 7 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟 (1st𝐴))
2720, 26jca 306 . . . . . 6 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → (𝑞 <Q 𝑟𝑟 (1st𝐴)))
2815, 19, 27reximssdv 2601 . . . . 5 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)))
293, 28rexlimddv 2619 . . . 4 (((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)))
3029ex 115 . . 3 ((𝜑𝑞Q) → (𝑞 (1st𝐴) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
31 simprr 531 . . . . . . 7 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → 𝑟 (1st𝐴))
3231, 25sylib 122 . . . . . 6 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
33 simprl 529 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑠𝐴)
34 simplrl 535 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 <Q 𝑟)
357ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝐴P)
3635, 33sseldd 3184 . . . . . . . . . . . 12 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑠P)
3736, 11syl 14 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
38 simprr 531 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑟 ∈ (1st𝑠))
39 prcdnql 7551 . . . . . . . . . . 11 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑟 ∈ (1st𝑠)) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑠)))
4037, 38, 39syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑠)))
4134, 40mpd 13 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
42 19.8a 1604 . . . . . . . . 9 ((𝑠𝐴𝑞 ∈ (1st𝑠)) → ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
4333, 41, 42syl2anc 411 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
44 df-rex 2481 . . . . . . . 8 (∃𝑠𝐴 𝑞 ∈ (1st𝑠) ↔ ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
4543, 44sylibr 134 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4645, 1sylibr 134 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 (1st𝐴))
4732, 46rexlimddv 2619 . . . . 5 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → 𝑞 (1st𝐴))
4847ex 115 . . . 4 ((𝜑𝑞Q) → ((𝑞 <Q 𝑟𝑟 (1st𝐴)) → 𝑞 (1st𝐴)))
4948rexlimdvw 2618 . . 3 ((𝜑𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)) → 𝑞 (1st𝐴)))
5030, 49impbid 129 . 2 ((𝜑𝑞Q) → (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
5150ralrimiva 2570 1 (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wex 1506  wcel 2167  wral 2475  wrex 2476  wss 3157  cop 3625   cuni 3839   class class class wbr 4033  cima 4666  cfv 5258  1st c1st 6196  2nd c2nd 6197  Qcnq 7347   <Q cltq 7352  Pcnp 7358  <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-qs 6598  df-ni 7371  df-nqqs 7415  df-ltnqqs 7420  df-inp 7533  df-iltp 7537
This theorem is referenced by:  suplocexprlemex  7789
  Copyright terms: Public domain W3C validator