ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemrl GIF version

Theorem suplocexprlemrl 7900
Description: Lemma for suplocexpr 7908. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemrl (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
Distinct variable groups:   𝐴,𝑟   𝑥,𝐴,𝑦   𝜑,𝑞,𝑟   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑞)

Proof of Theorem suplocexprlemrl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 suplocexprlemell 7896 . . . . . . 7 (𝑞 (1st𝐴) ↔ ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
21biimpi 120 . . . . . 6 (𝑞 (1st𝐴) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
32adantl 277 . . . . 5 (((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4 suplocexpr.m . . . . . . . . . . 11 (𝜑 → ∃𝑥 𝑥𝐴)
5 suplocexpr.ub . . . . . . . . . . 11 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
6 suplocexpr.loc . . . . . . . . . . 11 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
74, 5, 6suplocexprlemss 7898 . . . . . . . . . 10 (𝜑𝐴P)
87ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝐴P)
9 simprl 529 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠𝐴)
108, 9sseldd 3225 . . . . . . . 8 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠P)
11 prop 7658 . . . . . . . 8 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
1210, 11syl 14 . . . . . . 7 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
13 simprr 531 . . . . . . 7 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
14 prnmaxl 7671 . . . . . . 7 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞 ∈ (1st𝑠)) → ∃𝑟 ∈ (1st𝑠)𝑞 <Q 𝑟)
1512, 13, 14syl2anc 411 . . . . . 6 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑟 ∈ (1st𝑠)𝑞 <Q 𝑟)
16 ltrelnq 7548 . . . . . . . . 9 <Q ⊆ (Q × Q)
1716brel 4770 . . . . . . . 8 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
1817simprd 114 . . . . . . 7 (𝑞 <Q 𝑟𝑟Q)
1918ad2antll 491 . . . . . 6 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟Q)
20 simprr 531 . . . . . . 7 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑞 <Q 𝑟)
21 simplrl 535 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑠𝐴)
22 simprl 529 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟 ∈ (1st𝑠))
23 rspe 2579 . . . . . . . . 9 ((𝑠𝐴𝑟 ∈ (1st𝑠)) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
2421, 22, 23syl2anc 411 . . . . . . . 8 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
25 suplocexprlemell 7896 . . . . . . . 8 (𝑟 (1st𝐴) ↔ ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
2624, 25sylibr 134 . . . . . . 7 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟 (1st𝐴))
2720, 26jca 306 . . . . . 6 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → (𝑞 <Q 𝑟𝑟 (1st𝐴)))
2815, 19, 27reximssdv 2634 . . . . 5 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)))
293, 28rexlimddv 2653 . . . 4 (((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)))
3029ex 115 . . 3 ((𝜑𝑞Q) → (𝑞 (1st𝐴) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
31 simprr 531 . . . . . . 7 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → 𝑟 (1st𝐴))
3231, 25sylib 122 . . . . . 6 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
33 simprl 529 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑠𝐴)
34 simplrl 535 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 <Q 𝑟)
357ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝐴P)
3635, 33sseldd 3225 . . . . . . . . . . . 12 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑠P)
3736, 11syl 14 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
38 simprr 531 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑟 ∈ (1st𝑠))
39 prcdnql 7667 . . . . . . . . . . 11 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑟 ∈ (1st𝑠)) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑠)))
4037, 38, 39syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑠)))
4134, 40mpd 13 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
42 19.8a 1636 . . . . . . . . 9 ((𝑠𝐴𝑞 ∈ (1st𝑠)) → ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
4333, 41, 42syl2anc 411 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
44 df-rex 2514 . . . . . . . 8 (∃𝑠𝐴 𝑞 ∈ (1st𝑠) ↔ ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
4543, 44sylibr 134 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4645, 1sylibr 134 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 (1st𝐴))
4732, 46rexlimddv 2653 . . . . 5 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → 𝑞 (1st𝐴))
4847ex 115 . . . 4 ((𝜑𝑞Q) → ((𝑞 <Q 𝑟𝑟 (1st𝐴)) → 𝑞 (1st𝐴)))
4948rexlimdvw 2652 . . 3 ((𝜑𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)) → 𝑞 (1st𝐴)))
5030, 49impbid 129 . 2 ((𝜑𝑞Q) → (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
5150ralrimiva 2603 1 (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  wex 1538  wcel 2200  wral 2508  wrex 2509  wss 3197  cop 3669   cuni 3887   class class class wbr 4082  cima 4721  cfv 5317  1st c1st 6282  2nd c2nd 6283  Qcnq 7463   <Q cltq 7468  Pcnp 7474  <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-qs 6684  df-ni 7487  df-nqqs 7531  df-ltnqqs 7536  df-inp 7649  df-iltp 7653
This theorem is referenced by:  suplocexprlemex  7905
  Copyright terms: Public domain W3C validator