ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemrl GIF version

Theorem suplocexprlemrl 7779
Description: Lemma for suplocexpr 7787. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
Assertion
Ref Expression
suplocexprlemrl (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
Distinct variable groups:   𝐴,𝑟   𝑥,𝐴,𝑦   𝜑,𝑞,𝑟   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧,𝑞)

Proof of Theorem suplocexprlemrl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 suplocexprlemell 7775 . . . . . . 7 (𝑞 (1st𝐴) ↔ ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
21biimpi 120 . . . . . 6 (𝑞 (1st𝐴) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
32adantl 277 . . . . 5 (((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4 suplocexpr.m . . . . . . . . . . 11 (𝜑 → ∃𝑥 𝑥𝐴)
5 suplocexpr.ub . . . . . . . . . . 11 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
6 suplocexpr.loc . . . . . . . . . . 11 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
74, 5, 6suplocexprlemss 7777 . . . . . . . . . 10 (𝜑𝐴P)
87ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝐴P)
9 simprl 529 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠𝐴)
108, 9sseldd 3181 . . . . . . . 8 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑠P)
11 prop 7537 . . . . . . . 8 (𝑠P → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
1210, 11syl 14 . . . . . . 7 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
13 simprr 531 . . . . . . 7 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
14 prnmaxl 7550 . . . . . . 7 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑞 ∈ (1st𝑠)) → ∃𝑟 ∈ (1st𝑠)𝑞 <Q 𝑟)
1512, 13, 14syl2anc 411 . . . . . 6 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑟 ∈ (1st𝑠)𝑞 <Q 𝑟)
16 ltrelnq 7427 . . . . . . . . 9 <Q ⊆ (Q × Q)
1716brel 4712 . . . . . . . 8 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
1817simprd 114 . . . . . . 7 (𝑞 <Q 𝑟𝑟Q)
1918ad2antll 491 . . . . . 6 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟Q)
20 simprr 531 . . . . . . 7 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑞 <Q 𝑟)
21 simplrl 535 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑠𝐴)
22 simprl 529 . . . . . . . . 9 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟 ∈ (1st𝑠))
23 rspe 2543 . . . . . . . . 9 ((𝑠𝐴𝑟 ∈ (1st𝑠)) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
2421, 22, 23syl2anc 411 . . . . . . . 8 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
25 suplocexprlemell 7775 . . . . . . . 8 (𝑟 (1st𝐴) ↔ ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
2624, 25sylibr 134 . . . . . . 7 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → 𝑟 (1st𝐴))
2720, 26jca 306 . . . . . 6 (((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) ∧ (𝑟 ∈ (1st𝑠) ∧ 𝑞 <Q 𝑟)) → (𝑞 <Q 𝑟𝑟 (1st𝐴)))
2815, 19, 27reximssdv 2598 . . . . 5 ((((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) ∧ (𝑠𝐴𝑞 ∈ (1st𝑠))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)))
293, 28rexlimddv 2616 . . . 4 (((𝜑𝑞Q) ∧ 𝑞 (1st𝐴)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)))
3029ex 115 . . 3 ((𝜑𝑞Q) → (𝑞 (1st𝐴) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
31 simprr 531 . . . . . . 7 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → 𝑟 (1st𝐴))
3231, 25sylib 122 . . . . . 6 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → ∃𝑠𝐴 𝑟 ∈ (1st𝑠))
33 simprl 529 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑠𝐴)
34 simplrl 535 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 <Q 𝑟)
357ad3antrrr 492 . . . . . . . . . . . . 13 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝐴P)
3635, 33sseldd 3181 . . . . . . . . . . . 12 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑠P)
3736, 11syl 14 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ⟨(1st𝑠), (2nd𝑠)⟩ ∈ P)
38 simprr 531 . . . . . . . . . . 11 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑟 ∈ (1st𝑠))
39 prcdnql 7546 . . . . . . . . . . 11 ((⟨(1st𝑠), (2nd𝑠)⟩ ∈ P𝑟 ∈ (1st𝑠)) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑠)))
4037, 38, 39syl2anc 411 . . . . . . . . . 10 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → (𝑞 <Q 𝑟𝑞 ∈ (1st𝑠)))
4134, 40mpd 13 . . . . . . . . 9 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 ∈ (1st𝑠))
42 19.8a 1601 . . . . . . . . 9 ((𝑠𝐴𝑞 ∈ (1st𝑠)) → ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
4333, 41, 42syl2anc 411 . . . . . . . 8 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
44 df-rex 2478 . . . . . . . 8 (∃𝑠𝐴 𝑞 ∈ (1st𝑠) ↔ ∃𝑠(𝑠𝐴𝑞 ∈ (1st𝑠)))
4543, 44sylibr 134 . . . . . . 7 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → ∃𝑠𝐴 𝑞 ∈ (1st𝑠))
4645, 1sylibr 134 . . . . . 6 ((((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) ∧ (𝑠𝐴𝑟 ∈ (1st𝑠))) → 𝑞 (1st𝐴))
4732, 46rexlimddv 2616 . . . . 5 (((𝜑𝑞Q) ∧ (𝑞 <Q 𝑟𝑟 (1st𝐴))) → 𝑞 (1st𝐴))
4847ex 115 . . . 4 ((𝜑𝑞Q) → ((𝑞 <Q 𝑟𝑟 (1st𝐴)) → 𝑞 (1st𝐴)))
4948rexlimdvw 2615 . . 3 ((𝜑𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴)) → 𝑞 (1st𝐴)))
5030, 49impbid 129 . 2 ((𝜑𝑞Q) → (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
5150ralrimiva 2567 1 (𝜑 → ∀𝑞Q (𝑞 (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 (1st𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wex 1503  wcel 2164  wral 2472  wrex 2473  wss 3154  cop 3622   cuni 3836   class class class wbr 4030  cima 4663  cfv 5255  1st c1st 6193  2nd c2nd 6194  Qcnq 7342   <Q cltq 7347  Pcnp 7353  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-qs 6595  df-ni 7366  df-nqqs 7410  df-ltnqqs 7415  df-inp 7528  df-iltp 7532
This theorem is referenced by:  suplocexprlemex  7784
  Copyright terms: Public domain W3C validator