![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdv3a | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv 2593. (Contributed by NM, 7-Jun-2015.) |
Ref | Expression |
---|---|
rexlimdv3a.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
rexlimdv3a | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdv3a.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) | |
2 | 1 | 3exp 1202 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 2593 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 ∈ wcel 2148 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-ral 2460 df-rex 2461 |
This theorem is referenced by: resqrtcl 11041 |
Copyright terms: Public domain | W3C validator |