![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdva2 | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
rexlimdva2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 2610 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: ctssdclemn0 7171 ctssdc 7174 suplocexprlemru 7781 suplocexprlemloc 7783 suplocsrlemb 7868 aptap 8671 4sqlemffi 12537 4sqleminfi 12538 4sqexercise2 12540 4sqlemsdc 12541 ennnfonelemhom 12575 gsumfzval 12977 reldvdsrsrg 13591 innei 14342 ivthinclemlr 14816 ivthinclemur 14818 limccnpcntop 14854 limccoap 14857 2lgslem1c 15247 2lgslem3a1 15254 2lgslem3b1 15255 2lgslem3c1 15256 2lgslem3d1 15257 |
Copyright terms: Public domain | W3C validator |