ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdva2 GIF version

Theorem rexlimdva2 2614
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
rexlimdva2.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
rexlimdva2 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdva2
StepHypRef Expression
1 rexlimdva2.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21exp31 364 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 2610 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by:  ctssdclemn0  7171  ctssdc  7174  suplocexprlemru  7781  suplocexprlemloc  7783  suplocsrlemb  7868  aptap  8671  4sqlemffi  12537  4sqleminfi  12538  4sqexercise2  12540  4sqlemsdc  12541  ennnfonelemhom  12575  gsumfzval  12977  reldvdsrsrg  13591  innei  14342  ivthinclemlr  14816  ivthinclemur  14818  limccnpcntop  14854  limccoap  14857  2lgslem1c  15247  2lgslem3a1  15254  2lgslem3b1  15255  2lgslem3c1  15256  2lgslem3d1  15257
  Copyright terms: Public domain W3C validator