ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdva2 GIF version

Theorem rexlimdva2 2651
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
rexlimdva2.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
rexlimdva2 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdva2
StepHypRef Expression
1 rexlimdva2.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21exp31 364 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 2647 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  ctssdclemn0  7285  ctssdc  7288  suplocexprlemru  7914  suplocexprlemloc  7916  suplocsrlemb  8001  aptap  8805  4sqlemffi  12927  4sqleminfi  12928  4sqexercise2  12930  4sqlemsdc  12931  ennnfonelemhom  12994  gsumfzval  13432  innei  14845  ivthinclemlr  15319  ivthinclemur  15321  limccnpcntop  15357  limccoap  15360  2lgslem1c  15777  2lgslem3a1  15784  2lgslem3b1  15785  2lgslem3c1  15786  2lgslem3d1  15787  umgrnloop  15924
  Copyright terms: Public domain W3C validator