ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdva2 GIF version

Theorem rexlimdva2 2651
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
rexlimdva2.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
rexlimdva2 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdva2
StepHypRef Expression
1 rexlimdva2.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21exp31 364 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 2647 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  ctssdclemn0  7265  ctssdc  7268  suplocexprlemru  7894  suplocexprlemloc  7896  suplocsrlemb  7981  aptap  8785  4sqlemffi  12905  4sqleminfi  12906  4sqexercise2  12908  4sqlemsdc  12909  ennnfonelemhom  12972  gsumfzval  13410  reldvdsrsrg  14041  innei  14822  ivthinclemlr  15296  ivthinclemur  15298  limccnpcntop  15334  limccoap  15337  2lgslem1c  15754  2lgslem3a1  15761  2lgslem3b1  15762  2lgslem3c1  15763  2lgslem3d1  15764  umgrnloop  15901
  Copyright terms: Public domain W3C validator