ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdva2 GIF version

Theorem rexlimdva2 2627
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
rexlimdva2.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
rexlimdva2 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdva2
StepHypRef Expression
1 rexlimdva2.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21exp31 364 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 2623 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-ral 2490  df-rex 2491
This theorem is referenced by:  ctssdclemn0  7224  ctssdc  7227  suplocexprlemru  7845  suplocexprlemloc  7847  suplocsrlemb  7932  aptap  8736  4sqlemffi  12769  4sqleminfi  12770  4sqexercise2  12772  4sqlemsdc  12773  ennnfonelemhom  12836  gsumfzval  13273  reldvdsrsrg  13904  innei  14685  ivthinclemlr  15159  ivthinclemur  15161  limccnpcntop  15197  limccoap  15200  2lgslem1c  15617  2lgslem3a1  15624  2lgslem3b1  15625  2lgslem3c1  15626  2lgslem3d1  15627
  Copyright terms: Public domain W3C validator