ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdva2 GIF version

Theorem rexlimdva2 2617
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
rexlimdva2.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
rexlimdva2 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdva2
StepHypRef Expression
1 rexlimdva2.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21exp31 364 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 2613 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  ctssdclemn0  7176  ctssdc  7179  suplocexprlemru  7786  suplocexprlemloc  7788  suplocsrlemb  7873  aptap  8677  4sqlemffi  12565  4sqleminfi  12566  4sqexercise2  12568  4sqlemsdc  12569  ennnfonelemhom  12632  gsumfzval  13034  reldvdsrsrg  13648  innei  14399  ivthinclemlr  14873  ivthinclemur  14875  limccnpcntop  14911  limccoap  14914  2lgslem1c  15331  2lgslem3a1  15338  2lgslem3b1  15339  2lgslem3c1  15340  2lgslem3d1  15341
  Copyright terms: Public domain W3C validator