| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdva2 | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| rexlimdva2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| rexlimdva2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdva2.1 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | exp31 364 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 2623 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: ctssdclemn0 7224 ctssdc 7227 suplocexprlemru 7845 suplocexprlemloc 7847 suplocsrlemb 7932 aptap 8736 4sqlemffi 12769 4sqleminfi 12770 4sqexercise2 12772 4sqlemsdc 12773 ennnfonelemhom 12836 gsumfzval 13273 reldvdsrsrg 13904 innei 14685 ivthinclemlr 15159 ivthinclemur 15161 limccnpcntop 15197 limccoap 15200 2lgslem1c 15617 2lgslem3a1 15624 2lgslem3b1 15625 2lgslem3c1 15626 2lgslem3d1 15627 |
| Copyright terms: Public domain | W3C validator |