![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
rexlimdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | rexlimdv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
4 | 1, 2, 3 | rexlimd 2604 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ∃wrex 2469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2473 df-rex 2474 |
This theorem is referenced by: rexlimdva 2607 rexlimdv3a 2609 rexlimdva2 2610 rexlimdvw 2611 rexlimdvv 2614 ssorduni 4501 funcnvuni 5300 dffo3 5679 smoiun 6320 tfrlem9 6338 ordiso2 7052 axprecex 7897 recexap 8628 zdiv 9359 btwnz 9390 lbzbi 9634 imasgrp2 13018 imasrng 13271 imasring 13375 neibl 14388 metcnp3 14408 |
Copyright terms: Public domain | W3C validator |