ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdv GIF version

Theorem rexlimdv 2580
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypothesis
Ref Expression
rexlimdv.1 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
Assertion
Ref Expression
rexlimdv (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdv
StepHypRef Expression
1 nfv 1515 . 2 𝑥𝜑
2 nfv 1515 . 2 𝑥𝜒
3 rexlimdv.1 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 2, 3rexlimd 2578 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2135  wrex 2443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-4 1497  ax-17 1513  ax-ial 1521  ax-i5r 1522
This theorem depends on definitions:  df-bi 116  df-nf 1448  df-ral 2447  df-rex 2448
This theorem is referenced by:  rexlimdva  2581  rexlimdv3a  2583  rexlimdva2  2584  rexlimdvw  2585  rexlimdvv  2588  ssorduni  4459  funcnvuni  5252  dffo3  5627  smoiun  6261  tfrlem9  6279  ordiso2  6992  axprecex  7813  recexap  8542  zdiv  9271  btwnz  9302  lbzbi  9546  neibl  13049  metcnp3  13069
  Copyright terms: Public domain W3C validator