ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdv GIF version

Theorem rexlimdv 2613
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
Hypothesis
Ref Expression
rexlimdv.1 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
Assertion
Ref Expression
rexlimdv (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdv
StepHypRef Expression
1 nfv 1542 . 2 𝑥𝜑
2 nfv 1542 . 2 𝑥𝜒
3 rexlimdv.1 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 2, 3rexlimd 2611 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  rexlimdva  2614  rexlimdv3a  2616  rexlimdva2  2617  rexlimdvw  2618  rexlimdvv  2621  ssorduni  4523  funcnvuni  5327  dffo3  5709  smoiun  6359  tfrlem9  6377  ordiso2  7101  axprecex  7947  recexap  8680  zdiv  9414  btwnz  9445  lbzbi  9690  imasgrp2  13240  imasrng  13512  imasring  13620  neibl  14727  metcnp3  14747
  Copyright terms: Public domain W3C validator