Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimdv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
rexlimdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1515 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1515 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | rexlimdv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
4 | 1, 2, 3 | rexlimd 2578 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2135 ∃wrex 2443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-4 1497 ax-17 1513 ax-ial 1521 ax-i5r 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-ral 2447 df-rex 2448 |
This theorem is referenced by: rexlimdva 2581 rexlimdv3a 2583 rexlimdva2 2584 rexlimdvw 2585 rexlimdvv 2588 ssorduni 4459 funcnvuni 5252 dffo3 5627 smoiun 6261 tfrlem9 6279 ordiso2 6992 axprecex 7813 recexap 8542 zdiv 9271 btwnz 9302 lbzbi 9546 neibl 13049 metcnp3 13069 |
Copyright terms: Public domain | W3C validator |