| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdv | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| rexlimdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| rexlimdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 3 | rexlimdv.1 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 4 | 1, 2, 3 | rexlimd 2645 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexlimdva 2648 rexlimdv3a 2650 rexlimdva2 2651 rexlimdvw 2652 rexlimdvv 2655 ssorduni 4578 funcnvuni 5389 dffo3 5781 smoiun 6445 tfrlem9 6463 ordiso2 7198 axprecex 8063 recexap 8796 zdiv 9531 btwnz 9562 lbzbi 9807 imasmnd2 13480 imasgrp2 13642 imasrng 13914 imasring 14022 neibl 15159 metcnp3 15179 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |