| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvaa | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| rexlimdvaa.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| rexlimdvaa | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvaa.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | expr 375 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | rexlimdva 2648 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexlimddv 2653 nnsucuniel 6631 omp1eomlem 7249 ctmlemr 7263 mulgt0sr 7953 axpre-suploclemres 8076 cnegex 8312 receuap 8804 recapb 8806 rexanuz 11485 climcaucn 11848 fsumiun 11974 dvdsval2 12287 nninfctlemfo 12547 prmind2 12628 pcprmpw2 12842 pockthg 12866 dvdsrvald 14042 dvdsrd 14043 dvdsrex 14047 unitgrp 14065 isnzr2 14133 znunit 14608 tgcl 14723 neiint 14804 restopnb 14840 iscnp4 14877 blssexps 15088 blssex 15089 lgsne0 15702 lgsquadlem1 15741 |
| Copyright terms: Public domain | W3C validator |