ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvaa GIF version

Theorem rexlimdvaa 2509
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypothesis
Ref Expression
rexlimdvaa.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
Assertion
Ref Expression
rexlimdvaa (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdvaa
StepHypRef Expression
1 rexlimdvaa.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
21expr 370 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rexlimdva 2508 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1448  wrex 2376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-4 1455  ax-17 1474  ax-ial 1482  ax-i5r 1483
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-ral 2380  df-rex 2381
This theorem is referenced by:  rexlimddv  2513  nnsucuniel  6321  omp1eomlem  6894  ctmlemr  6908  mulgt0sr  7473  cnegex  7811  receuap  8291  rexanuz  10600  climcaucn  10959  fsumiun  11085  dvdsval2  11291  prmind2  11594  tgcl  12015  neiint  12096  restopnb  12132  iscnp4  12168  blssexps  12357  blssex  12358
  Copyright terms: Public domain W3C validator