| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvaa | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| rexlimdvaa.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| rexlimdvaa | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvaa.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | expr 375 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | rexlimdva 2614 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: rexlimddv 2619 nnsucuniel 6553 omp1eomlem 7160 ctmlemr 7174 mulgt0sr 7845 axpre-suploclemres 7968 cnegex 8204 receuap 8696 recapb 8698 rexanuz 11153 climcaucn 11516 fsumiun 11642 dvdsval2 11955 nninfctlemfo 12207 prmind2 12288 pcprmpw2 12502 pockthg 12526 dvdsrvald 13649 dvdsrd 13650 dvdsrex 13654 unitgrp 13672 isnzr2 13740 znunit 14215 tgcl 14300 neiint 14381 restopnb 14417 iscnp4 14454 blssexps 14665 blssex 14666 lgsne0 15279 lgsquadlem1 15318 |
| Copyright terms: Public domain | W3C validator |