| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvaa | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| rexlimdvaa.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| rexlimdvaa | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvaa.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | expr 375 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | rexlimdva 2614 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: rexlimddv 2619 nnsucuniel 6562 omp1eomlem 7169 ctmlemr 7183 mulgt0sr 7862 axpre-suploclemres 7985 cnegex 8221 receuap 8713 recapb 8715 rexanuz 11170 climcaucn 11533 fsumiun 11659 dvdsval2 11972 nninfctlemfo 12232 prmind2 12313 pcprmpw2 12527 pockthg 12551 dvdsrvald 13725 dvdsrd 13726 dvdsrex 13730 unitgrp 13748 isnzr2 13816 znunit 14291 tgcl 14384 neiint 14465 restopnb 14501 iscnp4 14538 blssexps 14749 blssex 14750 lgsne0 15363 lgsquadlem1 15402 |
| Copyright terms: Public domain | W3C validator |