Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimdvaa | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
rexlimdvaa.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
rexlimdvaa | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvaa.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
2 | 1 | expr 373 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | rexlimdva 2583 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: rexlimddv 2588 nnsucuniel 6463 omp1eomlem 7059 ctmlemr 7073 mulgt0sr 7719 axpre-suploclemres 7842 cnegex 8076 receuap 8566 rexanuz 10930 climcaucn 11292 fsumiun 11418 dvdsval2 11730 prmind2 12052 pcprmpw2 12264 pockthg 12287 tgcl 12714 neiint 12795 restopnb 12831 iscnp4 12868 blssexps 13079 blssex 13080 lgsne0 13589 |
Copyright terms: Public domain | W3C validator |