![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdvaa | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
rexlimdvaa.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
rexlimdvaa | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvaa.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
2 | 1 | expr 375 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | rexlimdva 2611 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 df-rex 2478 |
This theorem is referenced by: rexlimddv 2616 nnsucuniel 6548 omp1eomlem 7153 ctmlemr 7167 mulgt0sr 7838 axpre-suploclemres 7961 cnegex 8197 receuap 8688 recapb 8690 rexanuz 11132 climcaucn 11494 fsumiun 11620 dvdsval2 11933 nninfctlemfo 12177 prmind2 12258 pcprmpw2 12471 pockthg 12495 dvdsrvald 13589 dvdsrd 13590 dvdsrex 13594 unitgrp 13612 isnzr2 13680 znunit 14147 tgcl 14232 neiint 14313 restopnb 14349 iscnp4 14386 blssexps 14597 blssex 14598 lgsne0 15154 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |