ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvaa GIF version

Theorem rexlimdvaa 2615
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypothesis
Ref Expression
rexlimdvaa.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
Assertion
Ref Expression
rexlimdvaa (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdvaa
StepHypRef Expression
1 rexlimdvaa.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
21expr 375 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rexlimdva 2614 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  rexlimddv  2619  nnsucuniel  6554  omp1eomlem  7161  ctmlemr  7175  mulgt0sr  7847  axpre-suploclemres  7970  cnegex  8206  receuap  8698  recapb  8700  rexanuz  11155  climcaucn  11518  fsumiun  11644  dvdsval2  11957  nninfctlemfo  12217  prmind2  12298  pcprmpw2  12512  pockthg  12536  dvdsrvald  13659  dvdsrd  13660  dvdsrex  13664  unitgrp  13682  isnzr2  13750  znunit  14225  tgcl  14310  neiint  14391  restopnb  14427  iscnp4  14464  blssexps  14675  blssex  14676  lgsne0  15289  lgsquadlem1  15328
  Copyright terms: Public domain W3C validator