ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvaa GIF version

Theorem rexlimdvaa 2625
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypothesis
Ref Expression
rexlimdvaa.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
Assertion
Ref Expression
rexlimdvaa (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdvaa
StepHypRef Expression
1 rexlimdvaa.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
21expr 375 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rexlimdva 2624 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-ral 2490  df-rex 2491
This theorem is referenced by:  rexlimddv  2629  nnsucuniel  6591  omp1eomlem  7208  ctmlemr  7222  mulgt0sr  7904  axpre-suploclemres  8027  cnegex  8263  receuap  8755  recapb  8757  rexanuz  11349  climcaucn  11712  fsumiun  11838  dvdsval2  12151  nninfctlemfo  12411  prmind2  12492  pcprmpw2  12706  pockthg  12730  dvdsrvald  13905  dvdsrd  13906  dvdsrex  13910  unitgrp  13928  isnzr2  13996  znunit  14471  tgcl  14586  neiint  14667  restopnb  14703  iscnp4  14740  blssexps  14951  blssex  14952  lgsne0  15565  lgsquadlem1  15604
  Copyright terms: Public domain W3C validator