![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdvaa | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
rexlimdvaa.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
rexlimdvaa | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvaa.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
2 | 1 | expr 370 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
3 | 2 | rexlimdva 2508 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1448 ∃wrex 2376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 ax-17 1474 ax-ial 1482 ax-i5r 1483 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-ral 2380 df-rex 2381 |
This theorem is referenced by: rexlimddv 2513 nnsucuniel 6321 omp1eomlem 6894 ctmlemr 6908 mulgt0sr 7473 cnegex 7811 receuap 8291 rexanuz 10600 climcaucn 10959 fsumiun 11085 dvdsval2 11291 prmind2 11594 tgcl 12015 neiint 12096 restopnb 12132 iscnp4 12168 blssexps 12357 blssex 12358 |
Copyright terms: Public domain | W3C validator |