| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvaa | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| rexlimdvaa.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| rexlimdvaa | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvaa.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | expr 375 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | rexlimdva 2648 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexlimddv 2653 nnsucuniel 6649 omp1eomlem 7269 ctmlemr 7283 mulgt0sr 7973 axpre-suploclemres 8096 cnegex 8332 receuap 8824 recapb 8826 rexanuz 11507 climcaucn 11870 fsumiun 11996 dvdsval2 12309 nninfctlemfo 12569 prmind2 12650 pcprmpw2 12864 pockthg 12888 dvdsrvald 14065 dvdsrd 14066 dvdsrex 14070 unitgrp 14088 isnzr2 14156 znunit 14631 tgcl 14746 neiint 14827 restopnb 14863 iscnp4 14900 blssexps 15111 blssex 15112 lgsne0 15725 lgsquadlem1 15764 |
| Copyright terms: Public domain | W3C validator |