| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvaa | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| rexlimdvaa.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| Ref | Expression |
|---|---|
| rexlimdvaa | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvaa.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 2 | 1 | expr 375 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 3 | 2 | rexlimdva 2624 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: rexlimddv 2629 nnsucuniel 6591 omp1eomlem 7208 ctmlemr 7222 mulgt0sr 7904 axpre-suploclemres 8027 cnegex 8263 receuap 8755 recapb 8757 rexanuz 11349 climcaucn 11712 fsumiun 11838 dvdsval2 12151 nninfctlemfo 12411 prmind2 12492 pcprmpw2 12706 pockthg 12730 dvdsrvald 13905 dvdsrd 13906 dvdsrex 13910 unitgrp 13928 isnzr2 13996 znunit 14471 tgcl 14586 neiint 14667 restopnb 14703 iscnp4 14740 blssexps 14951 blssex 14952 lgsne0 15565 lgsquadlem1 15604 |
| Copyright terms: Public domain | W3C validator |