ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvaa GIF version

Theorem rexlimdvaa 2615
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypothesis
Ref Expression
rexlimdvaa.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
Assertion
Ref Expression
rexlimdvaa (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdvaa
StepHypRef Expression
1 rexlimdvaa.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
21expr 375 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rexlimdva 2614 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  rexlimddv  2619  nnsucuniel  6553  omp1eomlem  7160  ctmlemr  7174  mulgt0sr  7845  axpre-suploclemres  7968  cnegex  8204  receuap  8696  recapb  8698  rexanuz  11153  climcaucn  11516  fsumiun  11642  dvdsval2  11955  nninfctlemfo  12207  prmind2  12288  pcprmpw2  12502  pockthg  12526  dvdsrvald  13649  dvdsrd  13650  dvdsrex  13654  unitgrp  13672  isnzr2  13740  znunit  14215  tgcl  14300  neiint  14381  restopnb  14417  iscnp4  14454  blssexps  14665  blssex  14666  lgsne0  15279  lgsquadlem1  15318
  Copyright terms: Public domain W3C validator