ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvaa GIF version

Theorem rexlimdvaa 2615
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypothesis
Ref Expression
rexlimdvaa.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
Assertion
Ref Expression
rexlimdvaa (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdvaa
StepHypRef Expression
1 rexlimdvaa.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
21expr 375 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rexlimdva 2614 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480  df-rex 2481
This theorem is referenced by:  rexlimddv  2619  nnsucuniel  6562  omp1eomlem  7169  ctmlemr  7183  mulgt0sr  7862  axpre-suploclemres  7985  cnegex  8221  receuap  8713  recapb  8715  rexanuz  11170  climcaucn  11533  fsumiun  11659  dvdsval2  11972  nninfctlemfo  12232  prmind2  12313  pcprmpw2  12527  pockthg  12551  dvdsrvald  13725  dvdsrd  13726  dvdsrex  13730  unitgrp  13748  isnzr2  13816  znunit  14291  tgcl  14384  neiint  14465  restopnb  14501  iscnp4  14538  blssexps  14749  blssex  14750  lgsne0  15363  lgsquadlem1  15402
  Copyright terms: Public domain W3C validator