ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdvaa GIF version

Theorem rexlimdvaa 2649
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
Hypothesis
Ref Expression
rexlimdvaa.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
Assertion
Ref Expression
rexlimdvaa (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdvaa
StepHypRef Expression
1 rexlimdvaa.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
21expr 375 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32rexlimdva 2648 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-ral 2513  df-rex 2514
This theorem is referenced by:  rexlimddv  2653  nnsucuniel  6649  omp1eomlem  7269  ctmlemr  7283  mulgt0sr  7973  axpre-suploclemres  8096  cnegex  8332  receuap  8824  recapb  8826  rexanuz  11507  climcaucn  11870  fsumiun  11996  dvdsval2  12309  nninfctlemfo  12569  prmind2  12650  pcprmpw2  12864  pockthg  12888  dvdsrvald  14065  dvdsrd  14066  dvdsrex  14070  unitgrp  14088  isnzr2  14156  znunit  14631  tgcl  14746  neiint  14827  restopnb  14863  iscnp4  14900  blssexps  15111  blssex  15112  lgsne0  15725  lgsquadlem1  15764
  Copyright terms: Public domain W3C validator