Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrtcl GIF version

Theorem resqrtcl 10808
 Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrtcl ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)

Proof of Theorem resqrtcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrex 10805 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴))
2 simp1l 1005 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝐴 ∈ ℝ)
3 sqrtrval 10779 . . . . . 6 (𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
42, 3syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
5 simp3r 1010 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (𝑦↑2) = 𝐴)
6 simp3l 1009 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 0 ≤ 𝑦)
7 simp2 982 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → 𝑦 ∈ ℝ)
8 rersqreu 10807 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
983ad2ant1 1002 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
10 oveq1 5781 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
1110eqeq1d 2148 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴))
12 breq2 3933 . . . . . . . . 9 (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦))
1311, 12anbi12d 464 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦)))
1413riota2 5752 . . . . . . 7 ((𝑦 ∈ ℝ ∧ ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) = 𝑦))
157, 9, 14syl2anc 408 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) = 𝑦))
165, 6, 15mpbi2and 927 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) = 𝑦)
174, 16eqtrd 2172 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) = 𝑦)
1817, 7eqeltrd 2216 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑦 ∈ ℝ ∧ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴)) → (√‘𝐴) ∈ ℝ)
1918rexlimdv3a 2551 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (∃𝑦 ∈ ℝ (0 ≤ 𝑦 ∧ (𝑦↑2) = 𝐴) → (√‘𝐴) ∈ ℝ))
201, 19mpd 13 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∃wrex 2417  ∃!wreu 2418   class class class wbr 3929  ‘cfv 5123  ℩crio 5729  (class class class)co 5774  ℝcr 7626  0cc0 7627   ≤ cle 7808  2c2 8778  ↑cexp 10299  √csqrt 10775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449  df-seqfrec 10226  df-exp 10300  df-rsqrt 10777 This theorem is referenced by:  rersqrtthlem  10809  remsqsqrt  10811  sqrtgt0  10813  sqrtmul  10814  sqrtle  10815  sqrtlt  10816  sqrt11ap  10817  sqrt11  10818  rpsqrtcl  10820  sqrtdiv  10821  sqrtsq2  10822  abscl  10830  amgm2  10897  sqrtcli  10899  resqrtcld  10942
 Copyright terms: Public domain W3C validator