ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8eh GIF version

Theorem sb8eh 1848
Description: Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 15-Jan-2018.)
Hypothesis
Ref Expression
sb8eh.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
sb8eh (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8eh
StepHypRef Expression
1 sb8eh.1 . 2 (𝜑 → ∀𝑦𝜑)
21hbsb3 1801 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
3 sbequ12 1764 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbvexh 1748 1 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  wex 1485  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  exsb  2001
  Copyright terms: Public domain W3C validator