| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvexh | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| cbvexh.1 | ⊢ (𝜑 → ∀𝑦𝜑) | 
| cbvexh.2 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| cbvexh.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvexh | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvexh.2 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | hbex 1650 | . . 3 ⊢ (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓) | 
| 3 | cbvexh.1 | . . . . 5 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 4 | cbvexh.3 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | bicomd 141 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) | 
| 6 | 5 | equcoms 1722 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) | 
| 7 | 3, 6 | equsex 1742 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝜓) ↔ 𝜑) | 
| 8 | simpr 110 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝜓) → 𝜓) | |
| 9 | 8 | eximi 1614 | . . . 4 ⊢ (∃𝑦(𝑦 = 𝑥 ∧ 𝜓) → ∃𝑦𝜓) | 
| 10 | 7, 9 | sylbir 135 | . . 3 ⊢ (𝜑 → ∃𝑦𝜓) | 
| 11 | 2, 10 | exlimih 1607 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) | 
| 12 | 3 | hbex 1650 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑦∃𝑥𝜑) | 
| 13 | 1, 4 | equsex 1742 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | 
| 14 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) | |
| 15 | 14 | eximi 1614 | . . . 4 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥𝜑) | 
| 16 | 13, 15 | sylbir 135 | . . 3 ⊢ (𝜓 → ∃𝑥𝜑) | 
| 17 | 12, 16 | exlimih 1607 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) | 
| 18 | 11, 17 | impbii 126 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: cbvex 1770 sb8eh 1869 cbvexv 1933 euf 2050 mopick 2123 | 
| Copyright terms: Public domain | W3C validator |