![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqcoms | GIF version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
eqcoms | ⊢ (𝐵 = 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2179 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
2 | eqcoms.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝜑) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (𝐵 = 𝐴 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: gencbvex 2784 gencbval 2786 sbceq2a 2974 eqimss2 3211 uneqdifeqim 3509 tppreq3 3696 copsex2t 4246 copsex2g 4247 ordsoexmid 4562 0elsucexmid 4565 ordpwsucexmid 4570 cnveqb 5085 cnveq0 5086 relcoi1 5161 funtpg 5268 f0rn0 5411 f1ocnvfv 5780 f1ocnvfvb 5781 cbvfo 5786 cbvexfo 5787 brabvv 5921 ov6g 6012 ectocld 6601 ecoptocl 6622 phplem3 6854 f1dmvrnfibi 6943 f1vrnfibi 6944 updjud 7081 pr2ne 7191 nn0ind-raph 9370 nn01to3 9617 modqmuladd 10366 modqmuladdnn0 10368 fihashf1rn 10768 hashfzp1 10804 rennim 11011 xrmaxiflemcom 11257 m1expe 11904 m1expo 11905 m1exp1 11906 nn0o1gt2 11910 flodddiv4 11939 cncongr1 12103 m1dvdsndvds 12248 mgmsscl 12780 mndinvmod 12846 ringinvnzdiv 13227 txcn 13778 relogbcxpbap 14386 logbgcd1irr 14388 logbgcd1irraplemexp 14389 zabsle1 14403 2lgsoddprmlem3 14462 bj-inf2vnlem2 14726 |
Copyright terms: Public domain | W3C validator |