Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqcoms | GIF version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
eqcoms | ⊢ (𝐵 = 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2167 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
2 | eqcoms.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝜑) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (𝐵 = 𝐴 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: gencbvex 2772 gencbval 2774 sbceq2a 2961 eqimss2 3197 uneqdifeqim 3494 tppreq3 3679 copsex2t 4223 copsex2g 4224 ordsoexmid 4539 0elsucexmid 4542 ordpwsucexmid 4547 cnveqb 5059 cnveq0 5060 relcoi1 5135 funtpg 5239 f0rn0 5382 f1ocnvfv 5747 f1ocnvfvb 5748 cbvfo 5753 cbvexfo 5754 brabvv 5888 ov6g 5979 ectocld 6567 ecoptocl 6588 phplem3 6820 f1dmvrnfibi 6909 f1vrnfibi 6910 updjud 7047 pr2ne 7148 nn0ind-raph 9308 nn01to3 9555 modqmuladd 10301 modqmuladdnn0 10303 fihashf1rn 10702 hashfzp1 10737 rennim 10944 xrmaxiflemcom 11190 m1expe 11836 m1expo 11837 m1exp1 11838 nn0o1gt2 11842 flodddiv4 11871 cncongr1 12035 m1dvdsndvds 12180 mgmsscl 12592 txcn 12915 relogbcxpbap 13523 logbgcd1irr 13525 logbgcd1irraplemexp 13526 zabsle1 13540 bj-inf2vnlem2 13853 |
Copyright terms: Public domain | W3C validator |