Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqcoms | GIF version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
eqcoms | ⊢ (𝐵 = 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2172 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
2 | eqcoms.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝜑) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (𝐵 = 𝐴 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: gencbvex 2776 gencbval 2778 sbceq2a 2965 eqimss2 3202 uneqdifeqim 3500 tppreq3 3686 copsex2t 4230 copsex2g 4231 ordsoexmid 4546 0elsucexmid 4549 ordpwsucexmid 4554 cnveqb 5066 cnveq0 5067 relcoi1 5142 funtpg 5249 f0rn0 5392 f1ocnvfv 5758 f1ocnvfvb 5759 cbvfo 5764 cbvexfo 5765 brabvv 5899 ov6g 5990 ectocld 6579 ecoptocl 6600 phplem3 6832 f1dmvrnfibi 6921 f1vrnfibi 6922 updjud 7059 pr2ne 7169 nn0ind-raph 9329 nn01to3 9576 modqmuladd 10322 modqmuladdnn0 10324 fihashf1rn 10723 hashfzp1 10759 rennim 10966 xrmaxiflemcom 11212 m1expe 11858 m1expo 11859 m1exp1 11860 nn0o1gt2 11864 flodddiv4 11893 cncongr1 12057 m1dvdsndvds 12202 mgmsscl 12615 mndinvmod 12678 txcn 13069 relogbcxpbap 13677 logbgcd1irr 13679 logbgcd1irraplemexp 13680 zabsle1 13694 bj-inf2vnlem2 14006 |
Copyright terms: Public domain | W3C validator |