![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqcoms | GIF version |
Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcoms.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
Ref | Expression |
---|---|
eqcoms | ⊢ (𝐵 = 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2195 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
2 | eqcoms.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝜑) | |
3 | 1, 2 | sylbi 121 | 1 ⊢ (𝐵 = 𝐴 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: gencbvex 2807 gencbval 2809 sbceq2a 2997 eqimss2 3235 uneqdifeqim 3533 tppreq3 3722 copsex2t 4275 copsex2g 4276 ordsoexmid 4595 0elsucexmid 4598 ordpwsucexmid 4603 cnveqb 5122 cnveq0 5123 relcoi1 5198 funtpg 5306 f0rn0 5449 fimadmfo 5486 f1ocnvfv 5823 f1ocnvfvb 5824 cbvfo 5829 cbvexfo 5830 brabvv 5965 ov6g 6058 ectocld 6657 ecoptocl 6678 phplem3 6912 f1dmvrnfibi 7005 f1vrnfibi 7006 updjud 7143 pr2ne 7254 nn0ind-raph 9437 nn01to3 9685 modqmuladd 10440 modqmuladdnn0 10442 fihashf1rn 10862 hashfzp1 10898 rennim 11149 xrmaxiflemcom 11395 m1expe 12043 m1expo 12044 m1exp1 12045 nn0o1gt2 12049 flodddiv4 12078 cncongr1 12244 m1dvdsndvds 12389 mgmsscl 12947 mndinvmod 13029 ringinvnzdiv 13549 txcn 14454 relogbcxpbap 15138 logbgcd1irr 15140 logbgcd1irraplemexp 15141 zabsle1 15156 2lgslem1c 15247 2lgsoddprmlem3 15268 bj-inf2vnlem2 15533 |
Copyright terms: Public domain | W3C validator |