| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqcoms | GIF version | ||
| Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqcoms.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| eqcoms | ⊢ (𝐵 = 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
| 2 | eqcoms.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (𝐵 = 𝐴 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: gencbvex 2820 gencbval 2822 sbceq2a 3010 eqimss2 3249 uneqdifeqim 3547 tppreq3 3737 copsex2t 4293 copsex2g 4294 ordsoexmid 4614 0elsucexmid 4617 ordpwsucexmid 4622 cnveqb 5143 cnveq0 5144 relcoi1 5219 funtpg 5330 f0rn0 5477 fimadmfo 5514 f1ocnvfv 5855 f1ocnvfvb 5856 cbvfo 5861 cbvexfo 5862 brabvv 5998 ov6g 6091 ectocld 6695 ecoptocl 6716 phplem3 6958 f1dmvrnfibi 7053 f1vrnfibi 7054 updjud 7191 pr2ne 7307 nn0ind-raph 9497 nn01to3 9745 modqmuladd 10518 modqmuladdnn0 10520 fihashf1rn 10940 hashfzp1 10976 lswlgt0cl 11053 rennim 11357 xrmaxiflemcom 11604 m1expe 12254 m1expo 12255 m1exp1 12256 nn0o1gt2 12260 flodddiv4 12291 cncongr1 12469 m1dvdsndvds 12615 mgmsscl 13237 mndinvmod 13321 ringinvnzdiv 13856 txcn 14791 relogbcxpbap 15481 logbgcd1irr 15483 logbgcd1irraplemexp 15484 fsumdvdsmul 15507 zabsle1 15520 2lgslem1c 15611 2lgsoddprmlem3 15632 bj-inf2vnlem2 15981 |
| Copyright terms: Public domain | W3C validator |