| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqcoms | GIF version | ||
| Description: Inference applying commutative law for class equality to an antecedent. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqcoms.1 | ⊢ (𝐴 = 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| eqcoms | ⊢ (𝐵 = 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2198 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
| 2 | eqcoms.1 | . 2 ⊢ (𝐴 = 𝐵 → 𝜑) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (𝐵 = 𝐴 → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: gencbvex 2810 gencbval 2812 sbceq2a 3000 eqimss2 3239 uneqdifeqim 3537 tppreq3 3726 copsex2t 4279 copsex2g 4280 ordsoexmid 4599 0elsucexmid 4602 ordpwsucexmid 4607 cnveqb 5126 cnveq0 5127 relcoi1 5202 funtpg 5310 f0rn0 5455 fimadmfo 5492 f1ocnvfv 5829 f1ocnvfvb 5830 cbvfo 5835 cbvexfo 5836 brabvv 5972 ov6g 6065 ectocld 6669 ecoptocl 6690 phplem3 6924 f1dmvrnfibi 7019 f1vrnfibi 7020 updjud 7157 pr2ne 7273 nn0ind-raph 9462 nn01to3 9710 modqmuladd 10477 modqmuladdnn0 10479 fihashf1rn 10899 hashfzp1 10935 rennim 11186 xrmaxiflemcom 11433 m1expe 12083 m1expo 12084 m1exp1 12085 nn0o1gt2 12089 flodddiv4 12120 cncongr1 12298 m1dvdsndvds 12444 mgmsscl 13065 mndinvmod 13149 ringinvnzdiv 13684 txcn 14597 relogbcxpbap 15287 logbgcd1irr 15289 logbgcd1irraplemexp 15290 fsumdvdsmul 15313 zabsle1 15326 2lgslem1c 15417 2lgsoddprmlem3 15438 bj-inf2vnlem2 15703 |
| Copyright terms: Public domain | W3C validator |