| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1a | GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 1785. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 1788 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 2992 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 194 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 [wsb 1776 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 |
| This theorem is referenced by: sbceq2a 3000 elrabsf 3028 cbvralcsf 3147 cbvrexcsf 3148 euotd 4288 omsinds 4659 elfvmptrab1 5659 ralrnmpt 5707 rexrnmpt 5708 riotass2 5907 riotass 5908 elovmporab 6127 elovmporab1w 6128 uchoice 6204 sbcopeq1a 6254 mpoxopoveq 6307 findcard2 6959 findcard2s 6960 ac6sfi 6968 opabfi 7008 dcfi 7056 indpi 7426 nn0ind-raph 9460 indstr 9684 fzrevral 10197 exfzdc 10333 zsupcllemstep 10336 infssuzex 10340 uzsinds 10553 prmind2 12313 bj-intabssel 15519 bj-bdfindes 15679 bj-findes 15711 |
| Copyright terms: Public domain | W3C validator |