| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1a | GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 1817. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 1820 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3031 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 194 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 [wsb 1808 [wsbc 3028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-sbc 3029 |
| This theorem is referenced by: sbceq2a 3039 elrabsf 3067 cbvralcsf 3187 cbvrexcsf 3188 euotd 4340 omsinds 4713 elfvmptrab1 5728 ralrnmpt 5776 rexrnmpt 5777 riotass2 5982 riotass 5983 elovmporab 6204 elovmporab1w 6205 uchoice 6281 sbcopeq1a 6331 mpoxopoveq 6384 findcard2 7047 findcard2s 7048 ac6sfi 7056 opabfi 7096 dcfi 7144 indpi 7525 nn0ind-raph 9560 indstr 9784 fzrevral 10297 exfzdc 10441 zsupcllemstep 10444 infssuzex 10448 uzsinds 10661 wrdind 11249 wrd2ind 11250 prmind2 12637 gropd 15842 grstructd2dom 15843 bj-intabssel 16111 bj-bdfindes 16270 bj-findes 16302 |
| Copyright terms: Public domain | W3C validator |