Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbceq1a | GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 1751. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 1754 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 2940 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 193 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 [wsb 1742 [wsbc 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-sbc 2938 |
This theorem is referenced by: sbceq2a 2947 elrabsf 2975 cbvralcsf 3093 cbvrexcsf 3094 euotd 4214 omsinds 4580 elfvmptrab1 5561 ralrnmpt 5608 rexrnmpt 5609 riotass2 5803 riotass 5804 sbcopeq1a 6132 mpoxopoveq 6184 findcard2 6831 findcard2s 6832 ac6sfi 6840 indpi 7256 nn0ind-raph 9275 indstr 9498 fzrevral 10000 exfzdc 10132 uzsinds 10334 zsupcllemstep 11824 infssuzex 11828 prmind2 11988 bj-intabssel 13334 bj-bdfindes 13495 bj-findes 13527 |
Copyright terms: Public domain | W3C validator |