Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbceq1a | GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 1759. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 1762 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 2954 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 193 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 [wsb 1750 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-sbc 2952 |
This theorem is referenced by: sbceq2a 2961 elrabsf 2989 cbvralcsf 3107 cbvrexcsf 3108 euotd 4232 omsinds 4599 elfvmptrab1 5580 ralrnmpt 5627 rexrnmpt 5628 riotass2 5824 riotass 5825 sbcopeq1a 6155 mpoxopoveq 6208 findcard2 6855 findcard2s 6856 ac6sfi 6864 dcfi 6946 indpi 7283 nn0ind-raph 9308 indstr 9531 fzrevral 10040 exfzdc 10175 uzsinds 10377 zsupcllemstep 11878 infssuzex 11882 prmind2 12052 bj-intabssel 13670 bj-bdfindes 13831 bj-findes 13863 |
Copyright terms: Public domain | W3C validator |