| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbceq1a | GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 1795. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 1798 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3005 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 194 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 [wsb 1786 [wsbc 3002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-sbc 3003 |
| This theorem is referenced by: sbceq2a 3013 elrabsf 3041 cbvralcsf 3160 cbvrexcsf 3161 euotd 4307 omsinds 4678 elfvmptrab1 5687 ralrnmpt 5735 rexrnmpt 5736 riotass2 5939 riotass 5940 elovmporab 6159 elovmporab1w 6160 uchoice 6236 sbcopeq1a 6286 mpoxopoveq 6339 findcard2 7001 findcard2s 7002 ac6sfi 7010 opabfi 7050 dcfi 7098 indpi 7475 nn0ind-raph 9510 indstr 9734 fzrevral 10247 exfzdc 10391 zsupcllemstep 10394 infssuzex 10398 uzsinds 10611 wrdind 11198 wrd2ind 11199 prmind2 12517 gropd 15721 grstructd2dom 15722 bj-intabssel 15864 bj-bdfindes 16023 bj-findes 16055 |
| Copyright terms: Public domain | W3C validator |