![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbceq1a | GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 1771. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 1774 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 2967 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 194 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 [wsb 1762 [wsbc 2964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-sbc 2965 |
This theorem is referenced by: sbceq2a 2975 elrabsf 3003 cbvralcsf 3121 cbvrexcsf 3122 euotd 4256 omsinds 4623 elfvmptrab1 5613 ralrnmpt 5661 rexrnmpt 5662 riotass2 5860 riotass 5861 sbcopeq1a 6191 mpoxopoveq 6244 findcard2 6892 findcard2s 6893 ac6sfi 6901 dcfi 6983 indpi 7344 nn0ind-raph 9373 indstr 9596 fzrevral 10108 exfzdc 10243 uzsinds 10445 zsupcllemstep 11949 infssuzex 11953 prmind2 12123 bj-intabssel 14702 bj-bdfindes 14862 bj-findes 14894 |
Copyright terms: Public domain | W3C validator |