Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbceq1a | GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 1764. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 1767 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 2958 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 193 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 [wsb 1755 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-sbc 2956 |
This theorem is referenced by: sbceq2a 2965 elrabsf 2993 cbvralcsf 3111 cbvrexcsf 3112 euotd 4239 omsinds 4606 elfvmptrab1 5590 ralrnmpt 5638 rexrnmpt 5639 riotass2 5835 riotass 5836 sbcopeq1a 6166 mpoxopoveq 6219 findcard2 6867 findcard2s 6868 ac6sfi 6876 dcfi 6958 indpi 7304 nn0ind-raph 9329 indstr 9552 fzrevral 10061 exfzdc 10196 uzsinds 10398 zsupcllemstep 11900 infssuzex 11904 prmind2 12074 bj-intabssel 13824 bj-bdfindes 13984 bj-findes 14016 |
Copyright terms: Public domain | W3C validator |