ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbc GIF version

Theorem spsbc 2998
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1786 and rspsbc 3069. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
spsbc (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))

Proof of Theorem spsbc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 stdpc4 1786 . . . 4 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
2 sbsbc 2990 . . . 4 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
31, 2sylib 122 . . 3 (∀𝑥𝜑[𝑦 / 𝑥]𝜑)
4 dfsbcq 2988 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
53, 4imbitrid 154 . 2 (𝑦 = 𝐴 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
65vtocleg 2832 1 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  [wsb 1773  wcel 2164  [wsbc 2986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-sbc 2987
This theorem is referenced by:  spsbcd  2999  sbcth  3000  sbcthdv  3001  sbceqal  3042  sbcimdv  3052  csbiebt  3121  csbexga  4158
  Copyright terms: Public domain W3C validator