| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > spsbc | GIF version | ||
| Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1789 and rspsbc 3072. (Contributed by NM, 16-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| spsbc | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | stdpc4 1789 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 2 | sbsbc 2993 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | 1, 2 | sylib 122 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | 
| 4 | dfsbcq 2991 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 5 | 3, 4 | imbitrid 154 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | 
| 6 | 5 | vtocleg 2835 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 [wsb 1776 ∈ wcel 2167 [wsbc 2989 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-sbc 2990 | 
| This theorem is referenced by: spsbcd 3002 sbcth 3003 sbcthdv 3004 sbceqal 3045 sbcimdv 3055 csbiebt 3124 csbexga 4161 | 
| Copyright terms: Public domain | W3C validator |