![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spsbc | GIF version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1786 and rspsbc 3068. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
spsbc | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 1786 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
2 | sbsbc 2989 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | sylib 122 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
4 | dfsbcq 2987 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
5 | 3, 4 | imbitrid 154 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
6 | 5 | vtocleg 2831 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 [wsb 1773 ∈ wcel 2164 [wsbc 2985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 df-sbc 2986 |
This theorem is referenced by: spsbcd 2998 sbcth 2999 sbcthdv 3000 sbceqal 3041 sbcimdv 3051 csbiebt 3120 csbexga 4157 |
Copyright terms: Public domain | W3C validator |