![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spsbc | GIF version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1731 and rspsbc 2959. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
spsbc | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 1731 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
2 | sbsbc 2882 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | sylib 121 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
4 | dfsbcq 2880 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
5 | 3, 4 | syl5ib 153 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
6 | 5 | vtocleg 2728 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1312 = wceq 1314 ∈ wcel 1463 [wsb 1718 [wsbc 2878 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-v 2659 df-sbc 2879 |
This theorem is referenced by: spsbcd 2890 sbcth 2891 sbcthdv 2892 sbceqal 2932 sbcimdv 2942 csbiebt 3005 csbexga 4016 |
Copyright terms: Public domain | W3C validator |