Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb10f GIF version

Theorem sb10f 1971
 Description: Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.)
Hypothesis
Ref Expression
sb10f.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
sb10f ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sb10f
StepHypRef Expression
1 sb10f.1 . . . 4 (𝜑 → ∀𝑥𝜑)
21hbsb 1923 . . 3 ([𝑦 / 𝑧]𝜑 → ∀𝑥[𝑦 / 𝑧]𝜑)
3 sbequ 1813 . . 3 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
42, 3equsex 1707 . 2 (∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑) ↔ [𝑦 / 𝑧]𝜑)
54bicomi 131 1 ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104  ∀wal 1330  ∃wex 1469  [wsb 1736 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator