ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfvd GIF version

Theorem nfvd 1529
Description: nfv 1528 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders such as nfimd 1585. (Contributed by Mario Carneiro, 6-Oct-2016.)
Assertion
Ref Expression
nfvd (𝜑 → Ⅎ𝑥𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem nfvd
StepHypRef Expression
1 nfv 1528 . 2 𝑥𝜓
21a1i 9 1 (𝜑 → Ⅎ𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1449  ax-17 1526
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  sbiedv  1789  cbvaldva  1928  cbvexdva  1929  vtocld  2790  sbcied  3000  nfunid  3817  peano2  4595  iota2d  5204  iota2  5207  riota5f  5855  mpoxopoveq  6241  fproddivapf  11639  bdsepnft  14642
  Copyright terms: Public domain W3C validator