ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmid GIF version

Theorem acexmid 5781
Description: The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function 𝑦 provides a value when 𝑧 is inhabited (as opposed to nonempty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

For this theorem stated using the df-ac 7079 and df-exmid 4127 syntaxes, see exmidac 7082. (Contributed by Jim Kingdon, 4-Aug-2019.)

Hypothesis
Ref Expression
acexmid.choice 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
Assertion
Ref Expression
acexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem acexmid
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1509 . . . . . . . . . . . . . 14 𝑣(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒))
21sb8eu 2013 . . . . . . . . . . . . 13 (∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣[𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)))
3 eleq12 2205 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 𝑣𝑐 = 𝑧) → (𝑓𝑐𝑣𝑧))
43ancoms 266 . . . . . . . . . . . . . . . . . . 19 ((𝑐 = 𝑧𝑓 = 𝑣) → (𝑓𝑐𝑣𝑧))
543adant3 1002 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → (𝑓𝑐𝑣𝑧))
6 eleq12 2205 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 = 𝑧𝑒 = 𝑢) → (𝑐𝑒𝑧𝑢))
763ad2antl1 1144 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → (𝑐𝑒𝑧𝑢))
8 eleq12 2205 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 = 𝑣𝑒 = 𝑢) → (𝑓𝑒𝑣𝑢))
983ad2antl2 1145 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → (𝑓𝑒𝑣𝑢))
107, 9anbi12d 465 . . . . . . . . . . . . . . . . . . 19 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → ((𝑐𝑒𝑓𝑒) ↔ (𝑧𝑢𝑣𝑢)))
11 simpl3 987 . . . . . . . . . . . . . . . . . . 19 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → 𝑏 = 𝑦)
1210, 11cbvrexdva2 2665 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → (∃𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢)))
135, 12anbi12d 465 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
14133com23 1188 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝑧𝑏 = 𝑦𝑓 = 𝑣) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
15143expa 1182 . . . . . . . . . . . . . . 15 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑓 = 𝑣) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
1615sbiedv 1763 . . . . . . . . . . . . . 14 ((𝑐 = 𝑧𝑏 = 𝑦) → ([𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
1716eubidv 2008 . . . . . . . . . . . . 13 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑣[𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
182, 17syl5bb 191 . . . . . . . . . . . 12 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
19 df-reu 2424 . . . . . . . . . . . 12 (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)))
20 df-reu 2424 . . . . . . . . . . . 12 (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2118, 19, 203bitr4g 222 . . . . . . . . . . 11 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2221adantr 274 . . . . . . . . . 10 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑑 = 𝑤) → (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
23 simpll 519 . . . . . . . . . 10 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑑 = 𝑤) → 𝑐 = 𝑧)
2422, 23cbvraldva2 2664 . . . . . . . . 9 ((𝑐 = 𝑧𝑏 = 𝑦) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2524ancoms 266 . . . . . . . 8 ((𝑏 = 𝑦𝑐 = 𝑧) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2625adantll 468 . . . . . . 7 (((𝑎 = 𝑥𝑏 = 𝑦) ∧ 𝑐 = 𝑧) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
27 simpll 519 . . . . . . 7 (((𝑎 = 𝑥𝑏 = 𝑦) ∧ 𝑐 = 𝑧) → 𝑎 = 𝑥)
2826, 27cbvraldva2 2664 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → (∀𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2928cbvexdva 1902 . . . . 5 (𝑎 = 𝑥 → (∃𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
3029cbvalv 1890 . . . 4 (∀𝑎𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑥𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
31 acexmid.choice . . . 4 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
3230, 31mpgbir 1430 . . 3 𝑎𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒)
3332spi 1517 . 2 𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒)
3433acexmidlemv 5780 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 698  w3a 963  wal 1330  wex 1469  [wsb 1736  ∃!weu 2000  wral 2417  wrex 2418  ∃!wreu 2419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-tr 4035  df-iord 4296  df-on 4298  df-suc 4301  df-iota 5096  df-riota 5738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator