Step | Hyp | Ref
| Expression |
1 | | nfv 1516 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑣(𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒)) |
2 | 1 | sb8eu 2027 |
. . . . . . . . . . . . 13
⊢
(∃!𝑓(𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒)) ↔ ∃!𝑣[𝑣 / 𝑓](𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒))) |
3 | | eleq12 2231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 = 𝑣 ∧ 𝑐 = 𝑧) → (𝑓 ∈ 𝑐 ↔ 𝑣 ∈ 𝑧)) |
4 | 3 | ancoms 266 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 = 𝑧 ∧ 𝑓 = 𝑣) → (𝑓 ∈ 𝑐 ↔ 𝑣 ∈ 𝑧)) |
5 | 4 | 3adant3 1007 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = 𝑧 ∧ 𝑓 = 𝑣 ∧ 𝑏 = 𝑦) → (𝑓 ∈ 𝑐 ↔ 𝑣 ∈ 𝑧)) |
6 | | eleq12 2231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 = 𝑧 ∧ 𝑒 = 𝑢) → (𝑐 ∈ 𝑒 ↔ 𝑧 ∈ 𝑢)) |
7 | 6 | 3ad2antl1 1149 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑐 = 𝑧 ∧ 𝑓 = 𝑣 ∧ 𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → (𝑐 ∈ 𝑒 ↔ 𝑧 ∈ 𝑢)) |
8 | | eleq12 2231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 = 𝑣 ∧ 𝑒 = 𝑢) → (𝑓 ∈ 𝑒 ↔ 𝑣 ∈ 𝑢)) |
9 | 8 | 3ad2antl2 1150 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑐 = 𝑧 ∧ 𝑓 = 𝑣 ∧ 𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → (𝑓 ∈ 𝑒 ↔ 𝑣 ∈ 𝑢)) |
10 | 7, 9 | anbi12d 465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑐 = 𝑧 ∧ 𝑓 = 𝑣 ∧ 𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → ((𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
11 | | simpl3 992 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑐 = 𝑧 ∧ 𝑓 = 𝑣 ∧ 𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → 𝑏 = 𝑦) |
12 | 10, 11 | cbvrexdva2 2700 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = 𝑧 ∧ 𝑓 = 𝑣 ∧ 𝑏 = 𝑦) → (∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
13 | 5, 12 | anbi12d 465 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 = 𝑧 ∧ 𝑓 = 𝑣 ∧ 𝑏 = 𝑦) → ((𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑧 ∧ ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)))) |
14 | 13 | 3com23 1199 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 = 𝑧 ∧ 𝑏 = 𝑦 ∧ 𝑓 = 𝑣) → ((𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑧 ∧ ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)))) |
15 | 14 | 3expa 1193 |
. . . . . . . . . . . . . . 15
⊢ (((𝑐 = 𝑧 ∧ 𝑏 = 𝑦) ∧ 𝑓 = 𝑣) → ((𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑧 ∧ ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)))) |
16 | 15 | sbiedv 1777 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 = 𝑧 ∧ 𝑏 = 𝑦) → ([𝑣 / 𝑓](𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒)) ↔ (𝑣 ∈ 𝑧 ∧ ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)))) |
17 | 16 | eubidv 2022 |
. . . . . . . . . . . . 13
⊢ ((𝑐 = 𝑧 ∧ 𝑏 = 𝑦) → (∃!𝑣[𝑣 / 𝑓](𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒)) ↔ ∃!𝑣(𝑣 ∈ 𝑧 ∧ ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)))) |
18 | 2, 17 | syl5bb 191 |
. . . . . . . . . . . 12
⊢ ((𝑐 = 𝑧 ∧ 𝑏 = 𝑦) → (∃!𝑓(𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒)) ↔ ∃!𝑣(𝑣 ∈ 𝑧 ∧ ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)))) |
19 | | df-reu 2451 |
. . . . . . . . . . . 12
⊢
(∃!𝑓 ∈
𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∃!𝑓(𝑓 ∈ 𝑐 ∧ ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒))) |
20 | | df-reu 2451 |
. . . . . . . . . . . 12
⊢
(∃!𝑣 ∈
𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃!𝑣(𝑣 ∈ 𝑧 ∧ ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
21 | 18, 19, 20 | 3bitr4g 222 |
. . . . . . . . . . 11
⊢ ((𝑐 = 𝑧 ∧ 𝑏 = 𝑦) → (∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
22 | 21 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝑐 = 𝑧 ∧ 𝑏 = 𝑦) ∧ 𝑑 = 𝑤) → (∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
23 | | simpll 519 |
. . . . . . . . . 10
⊢ (((𝑐 = 𝑧 ∧ 𝑏 = 𝑦) ∧ 𝑑 = 𝑤) → 𝑐 = 𝑧) |
24 | 22, 23 | cbvraldva2 2699 |
. . . . . . . . 9
⊢ ((𝑐 = 𝑧 ∧ 𝑏 = 𝑦) → (∀𝑑 ∈ 𝑐 ∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
25 | 24 | ancoms 266 |
. . . . . . . 8
⊢ ((𝑏 = 𝑦 ∧ 𝑐 = 𝑧) → (∀𝑑 ∈ 𝑐 ∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
26 | 25 | adantll 468 |
. . . . . . 7
⊢ (((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ∧ 𝑐 = 𝑧) → (∀𝑑 ∈ 𝑐 ∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
27 | | simpll 519 |
. . . . . . 7
⊢ (((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) ∧ 𝑐 = 𝑧) → 𝑎 = 𝑥) |
28 | 26, 27 | cbvraldva2 2699 |
. . . . . 6
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑐 ∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
29 | 28 | cbvexdva 1917 |
. . . . 5
⊢ (𝑎 = 𝑥 → (∃𝑏∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑐 ∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢))) |
30 | 29 | cbvalv 1905 |
. . . 4
⊢
(∀𝑎∃𝑏∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑐 ∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) |
31 | | acexmid.choice |
. . . 4
⊢
∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) |
32 | 30, 31 | mpgbir 1441 |
. . 3
⊢
∀𝑎∃𝑏∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑐 ∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) |
33 | 32 | spi 1524 |
. 2
⊢
∃𝑏∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑐 ∃!𝑓 ∈ 𝑐 ∃𝑒 ∈ 𝑏 (𝑐 ∈ 𝑒 ∧ 𝑓 ∈ 𝑒) |
34 | 33 | acexmidlemv 5840 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |