ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmid GIF version

Theorem acexmid 6006
Description: The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function 𝑦 provides a value when 𝑧 is inhabited (as opposed to nonempty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

For this theorem stated using the df-ac 7396 and df-exmid 4279 syntaxes, see exmidac 7399. (Contributed by Jim Kingdon, 4-Aug-2019.)

Hypothesis
Ref Expression
acexmid.choice 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
Assertion
Ref Expression
acexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem acexmid
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1574 . . . . . . . . . . . . . 14 𝑣(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒))
21sb8eu 2090 . . . . . . . . . . . . 13 (∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣[𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)))
3 eleq12 2294 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 𝑣𝑐 = 𝑧) → (𝑓𝑐𝑣𝑧))
43ancoms 268 . . . . . . . . . . . . . . . . . . 19 ((𝑐 = 𝑧𝑓 = 𝑣) → (𝑓𝑐𝑣𝑧))
543adant3 1041 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → (𝑓𝑐𝑣𝑧))
6 eleq12 2294 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 = 𝑧𝑒 = 𝑢) → (𝑐𝑒𝑧𝑢))
763ad2antl1 1183 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → (𝑐𝑒𝑧𝑢))
8 eleq12 2294 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 = 𝑣𝑒 = 𝑢) → (𝑓𝑒𝑣𝑢))
983ad2antl2 1184 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → (𝑓𝑒𝑣𝑢))
107, 9anbi12d 473 . . . . . . . . . . . . . . . . . . 19 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → ((𝑐𝑒𝑓𝑒) ↔ (𝑧𝑢𝑣𝑢)))
11 simpl3 1026 . . . . . . . . . . . . . . . . . . 19 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → 𝑏 = 𝑦)
1210, 11cbvrexdva2 2773 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → (∃𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢)))
135, 12anbi12d 473 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
14133com23 1233 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝑧𝑏 = 𝑦𝑓 = 𝑣) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
15143expa 1227 . . . . . . . . . . . . . . 15 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑓 = 𝑣) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
1615sbiedv 1835 . . . . . . . . . . . . . 14 ((𝑐 = 𝑧𝑏 = 𝑦) → ([𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
1716eubidv 2085 . . . . . . . . . . . . 13 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑣[𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
182, 17bitrid 192 . . . . . . . . . . . 12 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
19 df-reu 2515 . . . . . . . . . . . 12 (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)))
20 df-reu 2515 . . . . . . . . . . . 12 (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2118, 19, 203bitr4g 223 . . . . . . . . . . 11 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2221adantr 276 . . . . . . . . . 10 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑑 = 𝑤) → (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
23 simpll 527 . . . . . . . . . 10 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑑 = 𝑤) → 𝑐 = 𝑧)
2422, 23cbvraldva2 2772 . . . . . . . . 9 ((𝑐 = 𝑧𝑏 = 𝑦) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2524ancoms 268 . . . . . . . 8 ((𝑏 = 𝑦𝑐 = 𝑧) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2625adantll 476 . . . . . . 7 (((𝑎 = 𝑥𝑏 = 𝑦) ∧ 𝑐 = 𝑧) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
27 simpll 527 . . . . . . 7 (((𝑎 = 𝑥𝑏 = 𝑦) ∧ 𝑐 = 𝑧) → 𝑎 = 𝑥)
2826, 27cbvraldva2 2772 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → (∀𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2928cbvexdva 1976 . . . . 5 (𝑎 = 𝑥 → (∃𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
3029cbvalv 1964 . . . 4 (∀𝑎𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑥𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
31 acexmid.choice . . . 4 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
3230, 31mpgbir 1499 . . 3 𝑎𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒)
3332spi 1582 . 2 𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒)
3433acexmidlemv 6005 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 713  w3a 1002  wal 1393  wex 1538  [wsb 1808  ∃!weu 2077  wral 2508  wrex 2509  ∃!wreu 2510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-iota 5278  df-riota 5960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator