ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmid GIF version

Theorem acexmid 5921
Description: The axiom of choice implies excluded middle. Theorem 1.3 in [Bauer] p. 483.

The statement of the axiom of choice given here is ac2 in the Metamath Proof Explorer (version of 3-Aug-2019). In particular, note that the choice function 𝑦 provides a value when 𝑧 is inhabited (as opposed to nonempty as in some statements of the axiom of choice).

Essentially the same proof can also be found at "The axiom of choice implies instances of EM", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Often referred to as Diaconescu's theorem, or Diaconescu-Goodman-Myhill theorem, after Radu Diaconescu who discovered it in 1975 in the framework of topos theory and N. D. Goodman and John Myhill in 1978 in the framework of set theory (although it already appeared as an exercise in Errett Bishop's book Foundations of Constructive Analysis from 1967).

For this theorem stated using the df-ac 7273 and df-exmid 4228 syntaxes, see exmidac 7276. (Contributed by Jim Kingdon, 4-Aug-2019.)

Hypothesis
Ref Expression
acexmid.choice 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
Assertion
Ref Expression
acexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem acexmid
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . . . . . . . . . . . . . 14 𝑣(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒))
21sb8eu 2058 . . . . . . . . . . . . 13 (∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣[𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)))
3 eleq12 2261 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 𝑣𝑐 = 𝑧) → (𝑓𝑐𝑣𝑧))
43ancoms 268 . . . . . . . . . . . . . . . . . . 19 ((𝑐 = 𝑧𝑓 = 𝑣) → (𝑓𝑐𝑣𝑧))
543adant3 1019 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → (𝑓𝑐𝑣𝑧))
6 eleq12 2261 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 = 𝑧𝑒 = 𝑢) → (𝑐𝑒𝑧𝑢))
763ad2antl1 1161 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → (𝑐𝑒𝑧𝑢))
8 eleq12 2261 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 = 𝑣𝑒 = 𝑢) → (𝑓𝑒𝑣𝑢))
983ad2antl2 1162 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → (𝑓𝑒𝑣𝑢))
107, 9anbi12d 473 . . . . . . . . . . . . . . . . . . 19 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → ((𝑐𝑒𝑓𝑒) ↔ (𝑧𝑢𝑣𝑢)))
11 simpl3 1004 . . . . . . . . . . . . . . . . . . 19 (((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) ∧ 𝑒 = 𝑢) → 𝑏 = 𝑦)
1210, 11cbvrexdva2 2737 . . . . . . . . . . . . . . . . . 18 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → (∃𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢)))
135, 12anbi12d 473 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝑧𝑓 = 𝑣𝑏 = 𝑦) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
14133com23 1211 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝑧𝑏 = 𝑦𝑓 = 𝑣) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
15143expa 1205 . . . . . . . . . . . . . . 15 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑓 = 𝑣) → ((𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
1615sbiedv 1803 . . . . . . . . . . . . . 14 ((𝑐 = 𝑧𝑏 = 𝑦) → ([𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ (𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
1716eubidv 2053 . . . . . . . . . . . . 13 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑣[𝑣 / 𝑓](𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
182, 17bitrid 192 . . . . . . . . . . . 12 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢))))
19 df-reu 2482 . . . . . . . . . . . 12 (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑓(𝑓𝑐 ∧ ∃𝑒𝑏 (𝑐𝑒𝑓𝑒)))
20 df-reu 2482 . . . . . . . . . . . 12 (∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃!𝑣(𝑣𝑧 ∧ ∃𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2118, 19, 203bitr4g 223 . . . . . . . . . . 11 ((𝑐 = 𝑧𝑏 = 𝑦) → (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2221adantr 276 . . . . . . . . . 10 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑑 = 𝑤) → (∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
23 simpll 527 . . . . . . . . . 10 (((𝑐 = 𝑧𝑏 = 𝑦) ∧ 𝑑 = 𝑤) → 𝑐 = 𝑧)
2422, 23cbvraldva2 2736 . . . . . . . . 9 ((𝑐 = 𝑧𝑏 = 𝑦) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2524ancoms 268 . . . . . . . 8 ((𝑏 = 𝑦𝑐 = 𝑧) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2625adantll 476 . . . . . . 7 (((𝑎 = 𝑥𝑏 = 𝑦) ∧ 𝑐 = 𝑧) → (∀𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
27 simpll 527 . . . . . . 7 (((𝑎 = 𝑥𝑏 = 𝑦) ∧ 𝑐 = 𝑧) → 𝑎 = 𝑥)
2826, 27cbvraldva2 2736 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → (∀𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
2928cbvexdva 1944 . . . . 5 (𝑎 = 𝑥 → (∃𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)))
3029cbvalv 1932 . . . 4 (∀𝑎𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒) ↔ ∀𝑥𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢))
31 acexmid.choice . . . 4 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
3230, 31mpgbir 1467 . . 3 𝑎𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒)
3332spi 1550 . 2 𝑏𝑐𝑎𝑑𝑐 ∃!𝑓𝑐𝑒𝑏 (𝑐𝑒𝑓𝑒)
3433acexmidlemv 5920 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709  w3a 980  wal 1362  wex 1506  [wsb 1776  ∃!weu 2045  wral 2475  wrex 2476  ∃!wreu 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iota 5219  df-riota 5877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator