ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pceu GIF version

Theorem pceu 12249
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
pcval.2 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
Assertion
Ref Expression
pceu ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑧,𝑁   𝑃,𝑛,𝑥,𝑦,𝑧   𝑧,𝑆   𝑧,𝑇
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑛)   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem pceu
Dummy variables 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 526 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℚ)
2 elq 9581 . . . 4 (𝑁 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
31, 2sylib 121 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦))
4 simpr 109 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 = (𝑥 / 𝑦))
5 simprr 527 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0)
65ad3antrrr 489 . . . . . . . . . . . 12 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 ≠ 0)
71ad3antrrr 489 . . . . . . . . . . . . 13 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 ∈ ℚ)
8 0z 9223 . . . . . . . . . . . . . 14 0 ∈ ℤ
9 zq 9585 . . . . . . . . . . . . . 14 (0 ∈ ℤ → 0 ∈ ℚ)
108, 9mp1i 10 . . . . . . . . . . . . 13 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 0 ∈ ℚ)
11 qapne 9598 . . . . . . . . . . . . 13 ((𝑁 ∈ ℚ ∧ 0 ∈ ℚ) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
127, 10, 11syl2anc 409 . . . . . . . . . . . 12 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
136, 12mpbird 166 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 # 0)
144, 13eqbrtrrd 4013 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 / 𝑦) # 0)
15 simpllr 529 . . . . . . . . . . . 12 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
1615zcnd 9335 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
17 nnz 9231 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1817adantl 275 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
1918adantr 274 . . . . . . . . . . . 12 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
2019zcnd 9335 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
21 simplr 525 . . . . . . . . . . . 12 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
2221nnap0d 8924 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 # 0)
2316, 20, 22divap0bd 8719 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0))
2414, 23mpbird 166 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 # 0)
25 0zd 9224 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 0 ∈ ℤ)
26 zapne 9286 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
2715, 25, 26syl2anc 409 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ 𝑥 ≠ 0))
2824, 27mpbid 146 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ≠ 0)
2928ex 114 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → 𝑥 ≠ 0))
3029adantrd 277 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) → 𝑥 ≠ 0))
3130exlimdv 1812 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) → 𝑥 ≠ 0))
32 prmuz2 12085 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
3332ad3antrrr 489 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ (ℤ‘2))
3433adantr 274 . . . . . . . . . . . . 13 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → 𝑃 ∈ (ℤ‘2))
35 simpllr 529 . . . . . . . . . . . . 13 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → 𝑥 ∈ ℤ)
36 simpr 109 . . . . . . . . . . . . 13 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → 𝑥 ≠ 0)
37 eqid 2170 . . . . . . . . . . . . . . 15 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}
38 pcval.1 . . . . . . . . . . . . . . 15 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
3937, 38pcprecl 12243 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑥))
4039simpld 111 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈ ℕ0)
4134, 35, 36, 40syl12anc 1231 . . . . . . . . . . . 12 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → 𝑆 ∈ ℕ0)
4241nn0zd 9332 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → 𝑆 ∈ ℤ)
43 nnne0 8906 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
4443adantl 275 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑦 ≠ 0)
45 eqid 2170 . . . . . . . . . . . . . . . 16 {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}
46 pcval.2 . . . . . . . . . . . . . . . 16 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
4745, 46pcprecl 12243 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℤ‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑦))
4833, 18, 44, 47syl12anc 1231 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑇 ∈ ℕ0 ∧ (𝑃𝑇) ∥ 𝑦))
4948simpld 111 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑇 ∈ ℕ0)
5049adantr 274 . . . . . . . . . . . 12 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → 𝑇 ∈ ℕ0)
5150nn0zd 9332 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → 𝑇 ∈ ℤ)
5242, 51zsubcld 9339 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑆𝑇) ∈ ℤ)
53 biidd 171 . . . . . . . . . . 11 (𝑧 = (𝑆𝑇) → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦)))
5453ceqsexgv 2859 . . . . . . . . . 10 ((𝑆𝑇) ∈ ℤ → (∃𝑧(𝑧 = (𝑆𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ 𝑁 = (𝑥 / 𝑦)))
5552, 54syl 14 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (∃𝑧(𝑧 = (𝑆𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ 𝑁 = (𝑥 / 𝑦)))
56 exancom 1601 . . . . . . . . 9 (∃𝑧(𝑧 = (𝑆𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
5755, 56bitr3di 194 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≠ 0) → (𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
5857ex 114 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑥 ≠ 0 → (𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))))
5929, 31, 58pm5.21ndd 700 . . . . . 6 ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
6059rexbidva 2467 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) → (∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
6160rexbidva 2467 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
62 rexcom4 2753 . . . . . 6 (∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑧𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
6362rexbii 2477 . . . . 5 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑥 ∈ ℤ ∃𝑧𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
64 rexcom4 2753 . . . . 5 (∃𝑥 ∈ ℤ ∃𝑧𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
6563, 64bitri 183 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
6661, 65bitrdi 195 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))))
673, 66mpbid 146 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
68 eqid 2170 . . . . . . . . . . 11 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < )
69 eqid 2170 . . . . . . . . . . 11 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )
70 simp11l 1103 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑃 ∈ ℙ)
71 simp11r 1104 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 ≠ 0)
72 simp12 1023 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ))
73 simp13l 1107 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 = (𝑥 / 𝑦))
74 simp2 993 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ))
75 simp3l 1020 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 = (𝑠 / 𝑡))
7638, 46, 68, 69, 70, 71, 72, 73, 74, 75pceulem 12248 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑆𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))
77 simp13r 1108 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = (𝑆𝑇))
78 simp3r 1021 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))
7976, 77, 783eqtr4d 2213 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤)
80793exp 1197 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) → ((𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)))
8180rexlimdvv 2594 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇))) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))
82813exp 1197 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))))
8382adantrl 475 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))))
8483rexlimdvv 2594 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)))
8584impd 252 . . 3 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤))
8685alrimivv 1868 . 2 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∀𝑧𝑤((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤))
87 eqeq1 2177 . . . . . 6 (𝑧 = 𝑤 → (𝑧 = (𝑆𝑇) ↔ 𝑤 = (𝑆𝑇)))
8887anbi2d 461 . . . . 5 (𝑧 = 𝑤 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇))))
89882rexbidv 2495 . . . 4 (𝑧 = 𝑤 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇))))
90 oveq1 5860 . . . . . . . . 9 (𝑥 = 𝑠 → (𝑥 / 𝑦) = (𝑠 / 𝑦))
9190eqeq2d 2182 . . . . . . . 8 (𝑥 = 𝑠 → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑠 / 𝑦)))
92 breq2 3993 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑃𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝑠))
9392rabbidv 2719 . . . . . . . . . . . 12 (𝑥 = 𝑠 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠})
9493supeq1d 6964 . . . . . . . . . . 11 (𝑥 = 𝑠 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ))
9538, 94eqtrid 2215 . . . . . . . . . 10 (𝑥 = 𝑠𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ))
9695oveq1d 5868 . . . . . . . . 9 (𝑥 = 𝑠 → (𝑆𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇))
9796eqeq2d 2182 . . . . . . . 8 (𝑥 = 𝑠 → (𝑤 = (𝑆𝑇) ↔ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)))
9891, 97anbi12d 470 . . . . . . 7 (𝑥 = 𝑠 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇)) ↔ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇))))
9998rexbidv 2471 . . . . . 6 (𝑥 = 𝑠 → (∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇)) ↔ ∃𝑦 ∈ ℕ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇))))
100 oveq2 5861 . . . . . . . . 9 (𝑦 = 𝑡 → (𝑠 / 𝑦) = (𝑠 / 𝑡))
101100eqeq2d 2182 . . . . . . . 8 (𝑦 = 𝑡 → (𝑁 = (𝑠 / 𝑦) ↔ 𝑁 = (𝑠 / 𝑡)))
102 breq2 3993 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → ((𝑃𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝑡))
103102rabbidv 2719 . . . . . . . . . . . 12 (𝑦 = 𝑡 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡})
104103supeq1d 6964 . . . . . . . . . . 11 (𝑦 = 𝑡 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))
10546, 104eqtrid 2215 . . . . . . . . . 10 (𝑦 = 𝑡𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))
106105oveq2d 5869 . . . . . . . . 9 (𝑦 = 𝑡 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))
107106eqeq2d 2182 . . . . . . . 8 (𝑦 = 𝑡 → (𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇) ↔ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))))
108101, 107anbi12d 470 . . . . . . 7 (𝑦 = 𝑡 → ((𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) ↔ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))))
109108cbvrexvw 2701 . . . . . 6 (∃𝑦 ∈ ℕ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) ↔ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))))
11099, 109bitrdi 195 . . . . 5 (𝑥 = 𝑠 → (∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇)) ↔ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))))
111110cbvrexvw 2701 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆𝑇)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < ))))
11289, 111bitrdi 195 . . 3 (𝑧 = 𝑤 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))))
113112eu4 2081 . 2 (∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ↔ (∃𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ∧ ∀𝑧𝑤((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤)))
11467, 86, 113sylanbrc 415 1 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆𝑇)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973  wal 1346   = wceq 1348  wex 1485  ∃!weu 2019  wcel 2141  wne 2340  wrex 2449  {crab 2452   class class class wbr 3989  cfv 5198  (class class class)co 5853  supcsup 6959  cr 7773  0cc0 7774   < clt 7954  cmin 8090   # cap 8500   / cdiv 8589  cn 8878  2c2 8929  0cn0 9135  cz 9212  cuz 9487  cq 9578  cexp 10475  cdvds 11749  cprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062
This theorem is referenced by:  pcval  12250  pczpre  12251  pcdiv  12256
  Copyright terms: Public domain W3C validator