Step | Hyp | Ref
| Expression |
1 | | simprl 521 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℚ) |
2 | | elq 9556 |
. . . 4
⊢ (𝑁 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝑁 = (𝑥 / 𝑦)) |
3 | 1, 2 | sylib 121 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦)) |
4 | | simpr 109 |
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 = (𝑥 / 𝑦)) |
5 | | simprr 522 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0) |
6 | 5 | ad3antrrr 484 |
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 ≠ 0) |
7 | 1 | ad3antrrr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 ∈ ℚ) |
8 | | 0z 9198 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
9 | | zq 9560 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
10 | 8, 9 | mp1i 10 |
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 0 ∈ ℚ) |
11 | | qapne 9573 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℚ ∧ 0 ∈
ℚ) → (𝑁 # 0
↔ 𝑁 ≠
0)) |
12 | 7, 10, 11 | syl2anc 409 |
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → (𝑁 # 0 ↔ 𝑁 ≠ 0)) |
13 | 6, 12 | mpbird 166 |
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 # 0) |
14 | 4, 13 | eqbrtrrd 4005 |
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 / 𝑦) # 0) |
15 | | simpllr 524 |
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ) |
16 | 15 | zcnd 9310 |
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ) |
17 | | nnz 9206 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
18 | 17 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℤ) |
19 | 18 | adantr 274 |
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ) |
20 | 19 | zcnd 9310 |
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ) |
21 | | simplr 520 |
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ) |
22 | 21 | nnap0d 8899 |
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 # 0) |
23 | 16, 20, 22 | divap0bd 8694 |
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0)) |
24 | 14, 23 | mpbird 166 |
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 # 0) |
25 | | 0zd 9199 |
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 0 ∈ ℤ) |
26 | | zapne 9261 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑥 # 0
↔ 𝑥 ≠
0)) |
27 | 15, 25, 26 | syl2anc 409 |
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ 𝑥 ≠ 0)) |
28 | 24, 27 | mpbid 146 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ≠ 0) |
29 | 28 | ex 114 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → 𝑥 ≠ 0)) |
30 | 29 | adantrd 277 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → 𝑥 ≠ 0)) |
31 | 30 | exlimdv 1807 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) →
(∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → 𝑥 ≠ 0)) |
32 | | prmuz2 12059 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
33 | 32 | ad3antrrr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
(ℤ≥‘2)) |
34 | 33 | adantr 274 |
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑃 ∈
(ℤ≥‘2)) |
35 | | simpllr 524 |
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑥 ∈
ℤ) |
36 | | simpr 109 |
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑥 ≠ 0) |
37 | | eqid 2165 |
. . . . . . . . . . . . . . 15
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} |
38 | | pcval.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) |
39 | 37, 38 | pcprecl 12217 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑥)) |
40 | 39 | simpld 111 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈
ℕ0) |
41 | 34, 35, 36, 40 | syl12anc 1226 |
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑆 ∈
ℕ0) |
42 | 41 | nn0zd 9307 |
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑆 ∈
ℤ) |
43 | | nnne0 8881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) |
44 | 43 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑦 ≠ 0) |
45 | | eqid 2165 |
. . . . . . . . . . . . . . . 16
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} |
46 | | pcval.2 |
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) |
47 | 45, 46 | pcprecl 12217 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃↑𝑇) ∥ 𝑦)) |
48 | 33, 18, 44, 47 | syl12anc 1226 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑇 ∈ ℕ0
∧ (𝑃↑𝑇) ∥ 𝑦)) |
49 | 48 | simpld 111 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑇 ∈
ℕ0) |
50 | 49 | adantr 274 |
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑇 ∈
ℕ0) |
51 | 50 | nn0zd 9307 |
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑇 ∈
ℤ) |
52 | 42, 51 | zsubcld 9314 |
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
(𝑆 − 𝑇) ∈
ℤ) |
53 | | biidd 171 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑆 − 𝑇) → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦))) |
54 | 53 | ceqsexgv 2854 |
. . . . . . . . . 10
⊢ ((𝑆 − 𝑇) ∈ ℤ → (∃𝑧(𝑧 = (𝑆 − 𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ 𝑁 = (𝑥 / 𝑦))) |
55 | 52, 54 | syl 14 |
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
(∃𝑧(𝑧 = (𝑆 − 𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ 𝑁 = (𝑥 / 𝑦))) |
56 | | exancom 1596 |
. . . . . . . . 9
⊢
(∃𝑧(𝑧 = (𝑆 − 𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
57 | 55, 56 | bitr3di 194 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
(𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
58 | 57 | ex 114 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑥 ≠ 0 → (𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))))) |
59 | 29, 31, 58 | pm5.21ndd 695 |
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
60 | 59 | rexbidva 2462 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) →
(∃𝑦 ∈ ℕ
𝑁 = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
61 | 60 | rexbidva 2462 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
62 | | rexcom4 2748 |
. . . . . 6
⊢
(∃𝑦 ∈
ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑧∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
63 | 62 | rexbii 2472 |
. . . . 5
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑥 ∈ ℤ ∃𝑧∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
64 | | rexcom4 2748 |
. . . . 5
⊢
(∃𝑥 ∈
ℤ ∃𝑧∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
65 | 63, 64 | bitri 183 |
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
66 | 61, 65 | bitrdi 195 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) |
67 | 3, 66 | mpbid 146 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |
68 | | eqid 2165 |
. . . . . . . . . . 11
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) |
69 | | eqid 2165 |
. . . . . . . . . . 11
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) |
70 | | simp11l 1098 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑃 ∈
ℙ) |
71 | | simp11r 1099 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 ≠ 0) |
72 | | simp12 1018 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑥 ∈ ℤ ∧ 𝑦 ∈
ℕ)) |
73 | | simp13l 1102 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 = (𝑥 / 𝑦)) |
74 | | simp2 988 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑠 ∈ ℤ ∧ 𝑡 ∈
ℕ)) |
75 | | simp3l 1015 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 = (𝑠 / 𝑡)) |
76 | 38, 46, 68, 69, 70, 71, 72, 73, 74, 75 | pceulem 12222 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑆 − 𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) |
77 | | simp13r 1103 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = (𝑆 − 𝑇)) |
78 | | simp3r 1016 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) |
79 | 76, 77, 78 | 3eqtr4d 2208 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤) |
80 | 79 | 3exp 1192 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) → ((𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))) |
81 | 80 | rexlimdvv 2589 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)) |
82 | 81 | 3exp 1192 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)))) |
83 | 82 | adantrl 470 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)))) |
84 | 83 | rexlimdvv 2589 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))) |
85 | 84 | impd 252 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤)) |
86 | 85 | alrimivv 1863 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∀𝑧∀𝑤((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤)) |
87 | | eqeq1 2172 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (𝑧 = (𝑆 − 𝑇) ↔ 𝑤 = (𝑆 − 𝑇))) |
88 | 87 | anbi2d 460 |
. . . . 5
⊢ (𝑧 = 𝑤 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)))) |
89 | 88 | 2rexbidv 2490 |
. . . 4
⊢ (𝑧 = 𝑤 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)))) |
90 | | oveq1 5848 |
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → (𝑥 / 𝑦) = (𝑠 / 𝑦)) |
91 | 90 | eqeq2d 2177 |
. . . . . . . 8
⊢ (𝑥 = 𝑠 → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑠 / 𝑦))) |
92 | | breq2 3985 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → ((𝑃↑𝑛) ∥ 𝑥 ↔ (𝑃↑𝑛) ∥ 𝑠)) |
93 | 92 | rabbidv 2714 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}) |
94 | 93 | supeq1d 6948 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < )) |
95 | 38, 94 | syl5eq 2210 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < )) |
96 | 95 | oveq1d 5856 |
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → (𝑆 − 𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) |
97 | 96 | eqeq2d 2177 |
. . . . . . . 8
⊢ (𝑥 = 𝑠 → (𝑤 = (𝑆 − 𝑇) ↔ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇))) |
98 | 91, 97 | anbi12d 465 |
. . . . . . 7
⊢ (𝑥 = 𝑠 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)) ↔ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)))) |
99 | 98 | rexbidv 2466 |
. . . . . 6
⊢ (𝑥 = 𝑠 → (∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)) ↔ ∃𝑦 ∈ ℕ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)))) |
100 | | oveq2 5849 |
. . . . . . . . 9
⊢ (𝑦 = 𝑡 → (𝑠 / 𝑦) = (𝑠 / 𝑡)) |
101 | 100 | eqeq2d 2177 |
. . . . . . . 8
⊢ (𝑦 = 𝑡 → (𝑁 = (𝑠 / 𝑦) ↔ 𝑁 = (𝑠 / 𝑡))) |
102 | | breq2 3985 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → ((𝑃↑𝑛) ∥ 𝑦 ↔ (𝑃↑𝑛) ∥ 𝑡)) |
103 | 102 | rabbidv 2714 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}) |
104 | 103 | supeq1d 6948 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑡 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )) |
105 | 46, 104 | syl5eq 2210 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑡 → 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )) |
106 | 105 | oveq2d 5857 |
. . . . . . . . 9
⊢ (𝑦 = 𝑡 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) |
107 | 106 | eqeq2d 2177 |
. . . . . . . 8
⊢ (𝑦 = 𝑡 → (𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇) ↔ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) |
108 | 101, 107 | anbi12d 465 |
. . . . . . 7
⊢ (𝑦 = 𝑡 → ((𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) ↔ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))))) |
109 | 108 | cbvrexvw 2696 |
. . . . . 6
⊢
(∃𝑦 ∈
ℕ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) ↔ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) |
110 | 99, 109 | bitrdi 195 |
. . . . 5
⊢ (𝑥 = 𝑠 → (∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)) ↔ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))))) |
111 | 110 | cbvrexvw 2696 |
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) |
112 | 89, 111 | bitrdi 195 |
. . 3
⊢ (𝑧 = 𝑤 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))))) |
113 | 112 | eu4 2076 |
. 2
⊢
(∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ (∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ∧ ∀𝑧∀𝑤((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤))) |
114 | 67, 86, 113 | sylanbrc 414 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |