| Step | Hyp | Ref
 | Expression | 
| 1 |   | simprl 529 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ∈
ℚ) | 
| 2 |   | elq 9696 | 
. . . 4
⊢ (𝑁 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝑁 = (𝑥 / 𝑦)) | 
| 3 | 1, 2 | sylib 122 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦)) | 
| 4 |   | simpr 110 | 
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 = (𝑥 / 𝑦)) | 
| 5 |   | simprr 531 | 
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → 𝑁 ≠ 0) | 
| 6 | 5 | ad3antrrr 492 | 
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 ≠ 0) | 
| 7 | 1 | ad3antrrr 492 | 
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 ∈ ℚ) | 
| 8 |   | 0z 9337 | 
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ | 
| 9 |   | zq 9700 | 
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℤ → 0 ∈ ℚ) | 
| 10 | 8, 9 | mp1i 10 | 
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 0 ∈ ℚ) | 
| 11 |   | qapne 9713 | 
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℚ ∧ 0 ∈
ℚ) → (𝑁 # 0
↔ 𝑁 ≠
0)) | 
| 12 | 7, 10, 11 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → (𝑁 # 0 ↔ 𝑁 ≠ 0)) | 
| 13 | 6, 12 | mpbird 167 | 
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑁 # 0) | 
| 14 | 4, 13 | eqbrtrrd 4057 | 
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 / 𝑦) # 0) | 
| 15 |   | simpllr 534 | 
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ) | 
| 16 | 15 | zcnd 9449 | 
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ) | 
| 17 |   | nnz 9345 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) | 
| 18 | 17 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℤ) | 
| 19 | 18 | adantr 276 | 
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ) | 
| 20 | 19 | zcnd 9449 | 
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ) | 
| 21 |   | simplr 528 | 
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ) | 
| 22 | 21 | nnap0d 9036 | 
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑦 # 0) | 
| 23 | 16, 20, 22 | divap0bd 8829 | 
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ (𝑥 / 𝑦) # 0)) | 
| 24 | 14, 23 | mpbird 167 | 
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 # 0) | 
| 25 |   | 0zd 9338 | 
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 0 ∈ ℤ) | 
| 26 |   | zapne 9400 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑥 # 0
↔ 𝑥 ≠
0)) | 
| 27 | 15, 25, 26 | syl2anc 411 | 
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → (𝑥 # 0 ↔ 𝑥 ≠ 0)) | 
| 28 | 24, 27 | mpbid 147 | 
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑁 = (𝑥 / 𝑦)) → 𝑥 ≠ 0) | 
| 29 | 28 | ex 115 | 
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) → 𝑥 ≠ 0)) | 
| 30 | 29 | adantrd 279 | 
. . . . . . . 8
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → 𝑥 ≠ 0)) | 
| 31 | 30 | exlimdv 1833 | 
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) →
(∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → 𝑥 ≠ 0)) | 
| 32 |   | prmuz2 12299 | 
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) | 
| 33 | 32 | ad3antrrr 492 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
(ℤ≥‘2)) | 
| 34 | 33 | adantr 276 | 
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑃 ∈
(ℤ≥‘2)) | 
| 35 |   | simpllr 534 | 
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑥 ∈
ℤ) | 
| 36 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑥 ≠ 0) | 
| 37 |   | eqid 2196 | 
. . . . . . . . . . . . . . 15
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} | 
| 38 |   | pcval.1 | 
. . . . . . . . . . . . . . 15
⊢ 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) | 
| 39 | 37, 38 | pcprecl 12458 | 
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑥)) | 
| 40 | 39 | simpld 112 | 
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → 𝑆 ∈
ℕ0) | 
| 41 | 34, 35, 36, 40 | syl12anc 1247 | 
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑆 ∈
ℕ0) | 
| 42 | 41 | nn0zd 9446 | 
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑆 ∈
ℤ) | 
| 43 |   | nnne0 9018 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) | 
| 44 | 43 | adantl 277 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑦 ≠ 0) | 
| 45 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢ {𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} | 
| 46 |   | pcval.2 | 
. . . . . . . . . . . . . . . 16
⊢ 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) | 
| 47 | 45, 46 | pcprecl 12458 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → (𝑇 ∈ ℕ0 ∧ (𝑃↑𝑇) ∥ 𝑦)) | 
| 48 | 33, 18, 44, 47 | syl12anc 1247 | 
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑇 ∈ ℕ0
∧ (𝑃↑𝑇) ∥ 𝑦)) | 
| 49 | 48 | simpld 112 | 
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → 𝑇 ∈
ℕ0) | 
| 50 | 49 | adantr 276 | 
. . . . . . . . . . . 12
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑇 ∈
ℕ0) | 
| 51 | 50 | nn0zd 9446 | 
. . . . . . . . . . 11
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
𝑇 ∈
ℤ) | 
| 52 | 42, 51 | zsubcld 9453 | 
. . . . . . . . . 10
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
(𝑆 − 𝑇) ∈
ℤ) | 
| 53 |   | biidd 172 | 
. . . . . . . . . . 11
⊢ (𝑧 = (𝑆 − 𝑇) → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑥 / 𝑦))) | 
| 54 | 53 | ceqsexgv 2893 | 
. . . . . . . . . 10
⊢ ((𝑆 − 𝑇) ∈ ℤ → (∃𝑧(𝑧 = (𝑆 − 𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ 𝑁 = (𝑥 / 𝑦))) | 
| 55 | 52, 54 | syl 14 | 
. . . . . . . . 9
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
(∃𝑧(𝑧 = (𝑆 − 𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ 𝑁 = (𝑥 / 𝑦))) | 
| 56 |   | exancom 1622 | 
. . . . . . . . 9
⊢
(∃𝑧(𝑧 = (𝑆 − 𝑇) ∧ 𝑁 = (𝑥 / 𝑦)) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | 
| 57 | 55, 56 | bitr3di 195 | 
. . . . . . . 8
⊢
(((((𝑃 ∈
ℙ ∧ (𝑁 ∈
ℚ ∧ 𝑁 ≠ 0))
∧ 𝑥 ∈ ℤ)
∧ 𝑦 ∈ ℕ)
∧ 𝑥 ≠ 0) →
(𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) | 
| 58 | 57 | ex 115 | 
. . . . . . 7
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑥 ≠ 0 → (𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))))) | 
| 59 | 29, 31, 58 | pm5.21ndd 706 | 
. . . . . 6
⊢ ((((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) | 
| 60 | 59 | rexbidva 2494 | 
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℤ) →
(∃𝑦 ∈ ℕ
𝑁 = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) | 
| 61 | 60 | rexbidva 2494 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) | 
| 62 |   | rexcom4 2786 | 
. . . . . 6
⊢
(∃𝑦 ∈
ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑧∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | 
| 63 | 62 | rexbii 2504 | 
. . . . 5
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑥 ∈ ℤ ∃𝑧∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | 
| 64 |   | rexcom4 2786 | 
. . . . 5
⊢
(∃𝑥 ∈
ℤ ∃𝑧∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | 
| 65 | 63, 64 | bitri 184 | 
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ ∃𝑧(𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | 
| 66 | 61, 65 | bitrdi 196 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 / 𝑦) ↔ ∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)))) | 
| 67 | 3, 66 | mpbid 147 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) | 
| 68 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) | 
| 69 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
sup({𝑛 ∈
ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ) | 
| 70 |   | simp11l 1110 | 
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑃 ∈
ℙ) | 
| 71 |   | simp11r 1111 | 
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 ≠ 0) | 
| 72 |   | simp12 1030 | 
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑥 ∈ ℤ ∧ 𝑦 ∈
ℕ)) | 
| 73 |   | simp13l 1114 | 
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 = (𝑥 / 𝑦)) | 
| 74 |   | simp2 1000 | 
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑠 ∈ ℤ ∧ 𝑡 ∈
ℕ)) | 
| 75 |   | simp3l 1027 | 
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑁 = (𝑠 / 𝑡)) | 
| 76 | 38, 46, 68, 69, 70, 71, 72, 73, 74, 75 | pceulem 12463 | 
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → (𝑆 − 𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) | 
| 77 |   | simp13r 1115 | 
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = (𝑆 − 𝑇)) | 
| 78 |   | simp3r 1028 | 
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) | 
| 79 | 76, 77, 78 | 3eqtr4d 2239 | 
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) ∧ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤) | 
| 80 | 79 | 3exp 1204 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ) → ((𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))) | 
| 81 | 80 | rexlimdvv 2621 | 
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)) | 
| 82 | 81 | 3exp 1204 | 
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ≠ 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)))) | 
| 83 | 82 | adantrl 478 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤)))) | 
| 84 | 83 | rexlimdvv 2621 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) → 𝑧 = 𝑤))) | 
| 85 | 84 | impd 254 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤)) | 
| 86 | 85 | alrimivv 1889 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∀𝑧∀𝑤((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤)) | 
| 87 |   | eqeq1 2203 | 
. . . . . 6
⊢ (𝑧 = 𝑤 → (𝑧 = (𝑆 − 𝑇) ↔ 𝑤 = (𝑆 − 𝑇))) | 
| 88 | 87 | anbi2d 464 | 
. . . . 5
⊢ (𝑧 = 𝑤 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)))) | 
| 89 | 88 | 2rexbidv 2522 | 
. . . 4
⊢ (𝑧 = 𝑤 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)))) | 
| 90 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → (𝑥 / 𝑦) = (𝑠 / 𝑦)) | 
| 91 | 90 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑥 = 𝑠 → (𝑁 = (𝑥 / 𝑦) ↔ 𝑁 = (𝑠 / 𝑦))) | 
| 92 |   | breq2 4037 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → ((𝑃↑𝑛) ∥ 𝑥 ↔ (𝑃↑𝑛) ∥ 𝑠)) | 
| 93 | 92 | rabbidv 2752 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑠 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}) | 
| 94 | 93 | supeq1d 7053 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑠 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < )) | 
| 95 | 38, 94 | eqtrid 2241 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑠 → 𝑆 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < )) | 
| 96 | 95 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑠 → (𝑆 − 𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) | 
| 97 | 96 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑥 = 𝑠 → (𝑤 = (𝑆 − 𝑇) ↔ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇))) | 
| 98 | 91, 97 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑥 = 𝑠 → ((𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)) ↔ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)))) | 
| 99 | 98 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑥 = 𝑠 → (∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)) ↔ ∃𝑦 ∈ ℕ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)))) | 
| 100 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑡 → (𝑠 / 𝑦) = (𝑠 / 𝑡)) | 
| 101 | 100 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑦 = 𝑡 → (𝑁 = (𝑠 / 𝑦) ↔ 𝑁 = (𝑠 / 𝑡))) | 
| 102 |   | breq2 4037 | 
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → ((𝑃↑𝑛) ∥ 𝑦 ↔ (𝑃↑𝑛) ∥ 𝑡)) | 
| 103 | 102 | rabbidv 2752 | 
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}) | 
| 104 | 103 | supeq1d 7053 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑡 → sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )) | 
| 105 | 46, 104 | eqtrid 2241 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑡 → 𝑇 = sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )) | 
| 106 | 105 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑡 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))) | 
| 107 | 106 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑦 = 𝑡 → (𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇) ↔ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) | 
| 108 | 101, 107 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑦 = 𝑡 → ((𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) ↔ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))))) | 
| 109 | 108 | cbvrexvw 2734 | 
. . . . . 6
⊢
(∃𝑦 ∈
ℕ (𝑁 = (𝑠 / 𝑦) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − 𝑇)) ↔ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) | 
| 110 | 99, 109 | bitrdi 196 | 
. . . . 5
⊢ (𝑥 = 𝑠 → (∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)) ↔ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))))) | 
| 111 | 110 | cbvrexvw 2734 | 
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑤 = (𝑆 − 𝑇)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) | 
| 112 | 89, 111 | bitrdi 196 | 
. . 3
⊢ (𝑧 = 𝑤 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < ))))) | 
| 113 | 112 | eu4 2107 | 
. 2
⊢
(∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ↔ (∃𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ∧ ∀𝑧∀𝑤((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℕ (𝑁 = (𝑠 / 𝑡) ∧ 𝑤 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑠}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑃↑𝑛) ∥ 𝑡}, ℝ, < )))) → 𝑧 = 𝑤))) | 
| 114 | 67, 86, 113 | sylanbrc 417 | 
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → ∃!𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑁 = (𝑥 / 𝑦) ∧ 𝑧 = (𝑆 − 𝑇))) |