Proof of Theorem pythagtriplem16
Step | Hyp | Ref
| Expression |
1 | | pythagtriplem15.1 |
. . . . 5
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) |
2 | | pythagtriplem15.2 |
. . . . 5
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
3 | 1, 2 | oveq12i 5863 |
. . . 4
⊢ (𝑀 · 𝑁) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) |
4 | | simp13 1024 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
5 | | simp12 1023 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
6 | 4, 5 | nnaddcld 8919 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℕ) |
7 | 6 | nnrpd 9644 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈
ℝ+) |
8 | 7 | rpsqrtcld 11115 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈
ℝ+) |
9 | 8 | rpcnd 9648 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ) |
10 | 4 | nnzd 9326 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℤ) |
11 | 5 | nnzd 9326 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℤ) |
12 | 10, 11 | zsubcld 9332 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℤ) |
13 | 12 | zred 9327 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
14 | | pythagtriplem10 12216 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
15 | 14 | 3adant3 1012 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 − 𝐵)) |
16 | 13, 15 | elrpd 9643 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈
ℝ+) |
17 | 16 | rpsqrtcld 11115 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈
ℝ+) |
18 | 17 | rpcnd 9648 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℂ) |
19 | 9, 18 | addcld 7932 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
20 | | 2cnd 8944 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 2 ∈
ℂ) |
21 | 9, 18 | subcld 8223 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
22 | | 2ap0 8964 |
. . . . . . 7
⊢ 2 #
0 |
23 | 22 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 2 #
0) |
24 | 19, 20, 21, 20, 23, 23 | divmuldivapd 8742 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
25 | 19, 21 | mulcld 7933 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ) |
26 | 25, 20, 20, 23, 23 | divdivap1d 8732 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
27 | | nnre 8878 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ) |
28 | | nnre 8878 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
29 | | readdcl 7893 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
30 | 27, 28, 29 | syl2anr 288 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
31 | 30 | 3adant1 1010 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
32 | 31 | 3ad2ant1 1013 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ) |
33 | 27 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℝ) |
34 | 28 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ) |
35 | | nngt0 8896 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
36 | 35 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
37 | | nngt0 8896 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
38 | 37 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
39 | 33, 34, 36, 38 | addgt0d 8433 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐶 + 𝐵)) |
40 | | 0re 7913 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
41 | | ltle 8000 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (𝐶 +
𝐵) ∈ ℝ) →
(0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
42 | 40, 41 | mpan 422 |
. . . . . . . . . . . . 13
⊢ ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
43 | 30, 39, 42 | sylc 62 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
44 | 43 | 3adant1 1010 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
45 | 44 | 3ad2ant1 1013 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵)) |
46 | | resqrtth 10988 |
. . . . . . . . . 10
⊢ (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
47 | 32, 45, 46 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
48 | | resubcl 8176 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
49 | 27, 28, 48 | syl2anr 288 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
50 | 49 | 3adant1 1010 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
51 | 50 | 3ad2ant1 1013 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
52 | | ltle 8000 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ (𝐶
− 𝐵) ∈ ℝ)
→ (0 < (𝐶 −
𝐵) → 0 ≤ (𝐶 − 𝐵))) |
53 | 40, 52 | mpan 422 |
. . . . . . . . . . 11
⊢ ((𝐶 − 𝐵) ∈ ℝ → (0 < (𝐶 − 𝐵) → 0 ≤ (𝐶 − 𝐵))) |
54 | 51, 15, 53 | sylc 62 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 − 𝐵)) |
55 | | resqrtth 10988 |
. . . . . . . . . 10
⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 − 𝐵)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
56 | 51, 54, 55 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
57 | 47, 56 | oveq12d 5869 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
58 | 57 | oveq1d 5866 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) / 2) =
(((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2)) |
59 | | subsq 10575 |
. . . . . . . . 9
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) =
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))))) |
60 | 9, 18, 59 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) =
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))))) |
61 | 60 | oveq1d 5866 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) / 2) =
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2)) |
62 | | nncn 8879 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
63 | | nncn 8879 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
64 | | pnncan 8153 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
65 | 64 | 3anidm23 1292 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
66 | | 2times 8999 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ℂ → (2
· 𝐵) = (𝐵 + 𝐵)) |
67 | 66 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐵) = (𝐵 + 𝐵)) |
68 | 65, 67 | eqtr4d 2206 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
69 | 62, 63, 68 | syl2anr 288 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
70 | 69 | 3adant1 1010 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
71 | 70 | 3ad2ant1 1013 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
72 | 71 | oveq1d 5866 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2) = ((2 · 𝐵) / 2)) |
73 | 5 | nncnd 8885 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ) |
74 | 73, 20, 23 | divcanap3d 8705 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) / 2) = 𝐵) |
75 | 72, 74 | eqtrd 2203 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2) = 𝐵) |
76 | 58, 61, 75 | 3eqtr3d 2211 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) = 𝐵) |
77 | 76 | oveq1d 5866 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = (𝐵 / 2)) |
78 | 24, 26, 77 | 3eqtr2d 2209 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = (𝐵 / 2)) |
79 | 3, 78 | eqtrid 2215 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 · 𝑁) = (𝐵 / 2)) |
80 | 79 | oveq2d 5867 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝑀 · 𝑁)) = (2 · (𝐵 / 2))) |
81 | 73, 20, 23 | divcanap2d 8702 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 / 2)) = 𝐵) |
82 | 80, 81 | eqtr2d 2204 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) |