ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem16 GIF version

Theorem pythagtriplem16 12281
Description: Lemma for pythagtrip 12285. Show the relationship between ๐‘€, ๐‘, and ๐ต. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
pythagtriplem15.1 ๐‘€ = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
pythagtriplem15.2 ๐‘ = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
Assertion
Ref Expression
pythagtriplem16 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ต = (2 ยท (๐‘€ ยท ๐‘)))

Proof of Theorem pythagtriplem16
StepHypRef Expression
1 pythagtriplem15.1 . . . . 5 ๐‘€ = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
2 pythagtriplem15.2 . . . . 5 ๐‘ = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
31, 2oveq12i 5889 . . . 4 (๐‘€ ยท ๐‘) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2))
4 simp13 1029 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ถ โˆˆ โ„•)
5 simp12 1028 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ต โˆˆ โ„•)
64, 5nnaddcld 8969 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ + ๐ต) โˆˆ โ„•)
76nnrpd 9696 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ + ๐ต) โˆˆ โ„+)
87rpsqrtcld 11169 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜(๐ถ + ๐ต)) โˆˆ โ„+)
98rpcnd 9700 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜(๐ถ + ๐ต)) โˆˆ โ„‚)
104nnzd 9376 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ถ โˆˆ โ„ค)
115nnzd 9376 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ต โˆˆ โ„ค)
1210, 11zsubcld 9382 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„ค)
1312zred 9377 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
14 pythagtriplem10 12271 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ 0 < (๐ถ โˆ’ ๐ต))
15143adant3 1017 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 0 < (๐ถ โˆ’ ๐ต))
1613, 15elrpd 9695 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„+)
1716rpsqrtcld 11169 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)) โˆˆ โ„+)
1817rpcnd 9700 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)) โˆˆ โ„‚)
199, 18addcld 7979 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) โˆˆ โ„‚)
20 2cnd 8994 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 2 โˆˆ โ„‚)
219, 18subcld 8270 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) โˆˆ โ„‚)
22 2ap0 9014 . . . . . . 7 2 # 0
2322a1i 9 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 2 # 0)
2419, 20, 21, 20, 23, 23divmuldivapd 8791 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) / (2 ยท 2)))
2519, 21mulcld 7980 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) โˆˆ โ„‚)
2625, 20, 20, 23, 23divdivap1d 8781 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) / 2) / 2) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) / (2 ยท 2)))
27 nnre 8928 . . . . . . . . . . . . 13 (๐ถ โˆˆ โ„• โ†’ ๐ถ โˆˆ โ„)
28 nnre 8928 . . . . . . . . . . . . 13 (๐ต โˆˆ โ„• โ†’ ๐ต โˆˆ โ„)
29 readdcl 7939 . . . . . . . . . . . . 13 ((๐ถ โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ถ + ๐ต) โˆˆ โ„)
3027, 28, 29syl2anr 290 . . . . . . . . . . . 12 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ต) โˆˆ โ„)
31303adant1 1015 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ต) โˆˆ โ„)
32313ad2ant1 1018 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ + ๐ต) โˆˆ โ„)
3327adantl 277 . . . . . . . . . . . . . 14 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„)
3428adantr 276 . . . . . . . . . . . . . 14 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„)
35 nngt0 8946 . . . . . . . . . . . . . . 15 (๐ถ โˆˆ โ„• โ†’ 0 < ๐ถ)
3635adantl 277 . . . . . . . . . . . . . 14 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 < ๐ถ)
37 nngt0 8946 . . . . . . . . . . . . . . 15 (๐ต โˆˆ โ„• โ†’ 0 < ๐ต)
3837adantr 276 . . . . . . . . . . . . . 14 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 < ๐ต)
3933, 34, 36, 38addgt0d 8480 . . . . . . . . . . . . 13 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 < (๐ถ + ๐ต))
40 0re 7959 . . . . . . . . . . . . . 14 0 โˆˆ โ„
41 ltle 8047 . . . . . . . . . . . . . 14 ((0 โˆˆ โ„ โˆง (๐ถ + ๐ต) โˆˆ โ„) โ†’ (0 < (๐ถ + ๐ต) โ†’ 0 โ‰ค (๐ถ + ๐ต)))
4240, 41mpan 424 . . . . . . . . . . . . 13 ((๐ถ + ๐ต) โˆˆ โ„ โ†’ (0 < (๐ถ + ๐ต) โ†’ 0 โ‰ค (๐ถ + ๐ต)))
4330, 39, 42sylc 62 . . . . . . . . . . . 12 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 โ‰ค (๐ถ + ๐ต))
44433adant1 1015 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ 0 โ‰ค (๐ถ + ๐ต))
45443ad2ant1 1018 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 0 โ‰ค (๐ถ + ๐ต))
46 resqrtth 11042 . . . . . . . . . 10 (((๐ถ + ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ถ + ๐ต)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) = (๐ถ + ๐ต))
4732, 45, 46syl2anc 411 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) = (๐ถ + ๐ต))
48 resubcl 8223 . . . . . . . . . . . . 13 ((๐ถ โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
4927, 28, 48syl2anr 290 . . . . . . . . . . . 12 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
50493adant1 1015 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
51503ad2ant1 1018 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ โˆ’ ๐ต) โˆˆ โ„)
52 ltle 8047 . . . . . . . . . . . 12 ((0 โˆˆ โ„ โˆง (๐ถ โˆ’ ๐ต) โˆˆ โ„) โ†’ (0 < (๐ถ โˆ’ ๐ต) โ†’ 0 โ‰ค (๐ถ โˆ’ ๐ต)))
5340, 52mpan 424 . . . . . . . . . . 11 ((๐ถ โˆ’ ๐ต) โˆˆ โ„ โ†’ (0 < (๐ถ โˆ’ ๐ต) โ†’ 0 โ‰ค (๐ถ โˆ’ ๐ต)))
5451, 15, 53sylc 62 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ 0 โ‰ค (๐ถ โˆ’ ๐ต))
55 resqrtth 11042 . . . . . . . . . 10 (((๐ถ โˆ’ ๐ต) โˆˆ โ„ โˆง 0 โ‰ค (๐ถ โˆ’ ๐ต)) โ†’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2) = (๐ถ โˆ’ ๐ต))
5651, 54, 55syl2anc 411 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2) = (๐ถ โˆ’ ๐ต))
5747, 56oveq12d 5895 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) โˆ’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2)) = ((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)))
5857oveq1d 5892 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) โˆ’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2)) / 2) = (((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) / 2))
59 subsq 10629 . . . . . . . . 9 (((โˆšโ€˜(๐ถ + ๐ต)) โˆˆ โ„‚ โˆง (โˆšโ€˜(๐ถ โˆ’ ๐ต)) โˆˆ โ„‚) โ†’ (((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) โˆ’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2)) = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))))
609, 18, 59syl2anc 411 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) โˆ’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2)) = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))))
6160oveq1d 5892 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต))โ†‘2) โˆ’ ((โˆšโ€˜(๐ถ โˆ’ ๐ต))โ†‘2)) / 2) = ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) / 2))
62 nncn 8929 . . . . . . . . . . . 12 (๐ถ โˆˆ โ„• โ†’ ๐ถ โˆˆ โ„‚)
63 nncn 8929 . . . . . . . . . . . 12 (๐ต โˆˆ โ„• โ†’ ๐ต โˆˆ โ„‚)
64 pnncan 8200 . . . . . . . . . . . . . 14 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) = (๐ต + ๐ต))
65643anidm23 1297 . . . . . . . . . . . . 13 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) = (๐ต + ๐ต))
66 2times 9049 . . . . . . . . . . . . . 14 (๐ต โˆˆ โ„‚ โ†’ (2 ยท ๐ต) = (๐ต + ๐ต))
6766adantl 277 . . . . . . . . . . . . 13 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (2 ยท ๐ต) = (๐ต + ๐ต))
6865, 67eqtr4d 2213 . . . . . . . . . . . 12 ((๐ถ โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) = (2 ยท ๐ต))
6962, 63, 68syl2anr 290 . . . . . . . . . . 11 ((๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) = (2 ยท ๐ต))
70693adant1 1015 . . . . . . . . . 10 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) = (2 ยท ๐ต))
71703ad2ant1 1018 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) = (2 ยท ๐ต))
7271oveq1d 5892 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) / 2) = ((2 ยท ๐ต) / 2))
735nncnd 8935 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ต โˆˆ โ„‚)
7473, 20, 23divcanap3d 8754 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((2 ยท ๐ต) / 2) = ๐ต)
7572, 74eqtrd 2210 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ถ + ๐ต) โˆ’ (๐ถ โˆ’ ๐ต)) / 2) = ๐ต)
7658, 61, 753eqtr3d 2218 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) / 2) = ๐ต)
7776oveq1d 5892 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) ยท ((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต)))) / 2) / 2) = (๐ต / 2))
7824, 26, 773eqtr2d 2216 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2) ยท (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)) = (๐ต / 2))
793, 78eqtrid 2222 . . 3 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐‘€ ยท ๐‘) = (๐ต / 2))
8079oveq2d 5893 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (2 ยท (๐‘€ ยท ๐‘)) = (2 ยท (๐ต / 2)))
8173, 20, 23divcanap2d 8751 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (2 ยท (๐ต / 2)) = ๐ต)
8280, 81eqtr2d 2211 1 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ต = (2 ยท (๐‘€ ยท ๐‘)))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   class class class wbr 4005  โ€˜cfv 5218  (class class class)co 5877  โ„‚cc 7811  โ„cr 7812  0cc0 7813  1c1 7814   + caddc 7816   ยท cmul 7818   < clt 7994   โ‰ค cle 7995   โˆ’ cmin 8130   # cap 8540   / cdiv 8631  โ„•cn 8921  2c2 8972  โ†‘cexp 10521  โˆšcsqrt 11007   โˆฅ cdvds 11796   gcd cgcd 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522  df-rsqrt 11009
This theorem is referenced by:  pythagtriplem18  12283
  Copyright terms: Public domain W3C validator