ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsgcd GIF version

Theorem dvdsgcd 12499
Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
dvdsgcd ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁)))

Proof of Theorem dvdsgcd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezout 12498 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)))
213adant1 1020 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)))
3 dvds2ln 12301 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁))))
433impia 1205 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁)) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁)))
543coml 1215 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁)))
6 simp3l 1030 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
7 simp12 1033 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 ∈ ℤ)
8 zcn 9419 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9 zcn 9419 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
10 mulcom 8096 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · 𝑀) = (𝑀 · 𝑥))
118, 9, 10syl2an 289 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 · 𝑀) = (𝑀 · 𝑥))
126, 7, 11syl2anc 411 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑀) = (𝑀 · 𝑥))
13 simp3r 1031 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
14 simp13 1034 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ)
15 zcn 9419 . . . . . . . . . 10 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
16 zcn 9419 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
17 mulcom 8096 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑦 · 𝑁) = (𝑁 · 𝑦))
1815, 16, 17syl2an 289 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 · 𝑁) = (𝑁 · 𝑦))
1913, 14, 18syl2anc 411 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝑁) = (𝑁 · 𝑦))
2012, 19oveq12d 5992 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑀) + (𝑦 · 𝑁)) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)))
215, 20breqtrd 4088 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∥ ((𝑀 · 𝑥) + (𝑁 · 𝑦)))
22 breq2 4066 . . . . . 6 ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → (𝐾 ∥ (𝑀 gcd 𝑁) ↔ 𝐾 ∥ ((𝑀 · 𝑥) + (𝑁 · 𝑦))))
2321, 22syl5ibrcom 157 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁)))
24233expia 1210 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁))))
2524rexlimdvv 2635 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝐾𝑁)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁)))
2625ex 115 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁))))
272, 26mpid 42 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wrex 2489   class class class wbr 4062  (class class class)co 5974  cc 7965   + caddc 7970   · cmul 7972  cz 9414  cdvds 12264   gcd cgcd 12440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441
This theorem is referenced by:  dvdsgcdb  12500  dfgcd2  12501  mulgcd  12503  ncoprmgcdne1b  12577  mulgcddvds  12582  rpmulgcd2  12583  rpexp  12641  pythagtriplem4  12757  pcgcd1  12817  pockthlem  12845  lgsne0  15682  lgsquad2lem2  15726
  Copyright terms: Public domain W3C validator