ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsgcd GIF version

Theorem dvdsgcd 12027
Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.)
Assertion
Ref Expression
dvdsgcd ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โ†’ ๐พ โˆฅ (๐‘€ gcd ๐‘)))

Proof of Theorem dvdsgcd
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezout 12026 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘€ gcd ๐‘) = ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)))
213adant1 1016 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘€ gcd ๐‘) = ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)))
3 dvds2ln 11845 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โˆง (๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ ((๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โ†’ ๐พ โˆฅ ((๐‘ฅ ยท ๐‘€) + (๐‘ฆ ยท ๐‘))))
433impia 1201 . . . . . . . 8 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โˆง (๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘)) โ†’ ๐พ โˆฅ ((๐‘ฅ ยท ๐‘€) + (๐‘ฆ ยท ๐‘)))
543coml 1211 . . . . . . 7 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ๐พ โˆฅ ((๐‘ฅ ยท ๐‘€) + (๐‘ฆ ยท ๐‘)))
6 simp3l 1026 . . . . . . . . 9 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ๐‘ฅ โˆˆ โ„ค)
7 simp12 1029 . . . . . . . . 9 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ๐‘€ โˆˆ โ„ค)
8 zcn 9272 . . . . . . . . . 10 (๐‘ฅ โˆˆ โ„ค โ†’ ๐‘ฅ โˆˆ โ„‚)
9 zcn 9272 . . . . . . . . . 10 (๐‘€ โˆˆ โ„ค โ†’ ๐‘€ โˆˆ โ„‚)
10 mulcom 7954 . . . . . . . . . 10 ((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚) โ†’ (๐‘ฅ ยท ๐‘€) = (๐‘€ ยท ๐‘ฅ))
118, 9, 10syl2an 289 . . . . . . . . 9 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค) โ†’ (๐‘ฅ ยท ๐‘€) = (๐‘€ ยท ๐‘ฅ))
126, 7, 11syl2anc 411 . . . . . . . 8 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ (๐‘ฅ ยท ๐‘€) = (๐‘€ ยท ๐‘ฅ))
13 simp3r 1027 . . . . . . . . 9 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ๐‘ฆ โˆˆ โ„ค)
14 simp13 1030 . . . . . . . . 9 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ๐‘ โˆˆ โ„ค)
15 zcn 9272 . . . . . . . . . 10 (๐‘ฆ โˆˆ โ„ค โ†’ ๐‘ฆ โˆˆ โ„‚)
16 zcn 9272 . . . . . . . . . 10 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„‚)
17 mulcom 7954 . . . . . . . . . 10 ((๐‘ฆ โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„‚) โ†’ (๐‘ฆ ยท ๐‘) = (๐‘ ยท ๐‘ฆ))
1815, 16, 17syl2an 289 . . . . . . . . 9 ((๐‘ฆ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘ฆ ยท ๐‘) = (๐‘ ยท ๐‘ฆ))
1913, 14, 18syl2anc 411 . . . . . . . 8 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ (๐‘ฆ ยท ๐‘) = (๐‘ ยท ๐‘ฆ))
2012, 19oveq12d 5906 . . . . . . 7 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ((๐‘ฅ ยท ๐‘€) + (๐‘ฆ ยท ๐‘)) = ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)))
215, 20breqtrd 4041 . . . . . 6 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ๐พ โˆฅ ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)))
22 breq2 4019 . . . . . 6 ((๐‘€ gcd ๐‘) = ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)) โ†’ (๐พ โˆฅ (๐‘€ gcd ๐‘) โ†” ๐พ โˆฅ ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ))))
2321, 22syl5ibrcom 157 . . . . 5 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ((๐‘€ gcd ๐‘) = ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)) โ†’ ๐พ โˆฅ (๐‘€ gcd ๐‘)))
24233expia 1206 . . . 4 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘)) โ†’ ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โ†’ ((๐‘€ gcd ๐‘) = ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)) โ†’ ๐พ โˆฅ (๐‘€ gcd ๐‘))))
2524rexlimdvv 2611 . . 3 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘)) โ†’ (โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘€ gcd ๐‘) = ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)) โ†’ ๐พ โˆฅ (๐‘€ gcd ๐‘)))
2625ex 115 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โ†’ (โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„ค (๐‘€ gcd ๐‘) = ((๐‘€ ยท ๐‘ฅ) + (๐‘ ยท ๐‘ฆ)) โ†’ ๐พ โˆฅ (๐‘€ gcd ๐‘))))
272, 26mpid 42 1 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โ†’ ๐พ โˆฅ (๐‘€ gcd ๐‘)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆง w3a 979   = wceq 1363   โˆˆ wcel 2158  โˆƒwrex 2466   class class class wbr 4015  (class class class)co 5888  โ„‚cc 7823   + caddc 7828   ยท cmul 7830  โ„คcz 9267   โˆฅ cdvds 11808   gcd cgcd 11957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-sup 6997  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-fl 10284  df-mod 10337  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-dvds 11809  df-gcd 11958
This theorem is referenced by:  dvdsgcdb  12028  dfgcd2  12029  mulgcd  12031  ncoprmgcdne1b  12103  mulgcddvds  12108  rpmulgcd2  12109  rpexp  12167  pythagtriplem4  12282  pcgcd1  12341  pockthlem  12368  lgsne0  14792
  Copyright terms: Public domain W3C validator