| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsgcd | GIF version | ||
| Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.) |
| Ref | Expression |
|---|---|
| dvdsgcd | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout 12498 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) | |
| 2 | 1 | 3adant1 1020 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) |
| 3 | dvds2ln 12301 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁)))) | |
| 4 | 3 | 3impia 1205 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁))) |
| 5 | 4 | 3coml 1215 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁))) |
| 6 | simp3l 1030 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
| 7 | simp12 1033 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
| 8 | zcn 9419 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 9 | zcn 9419 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 10 | mulcom 8096 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) | |
| 11 | 8, 9, 10 | syl2an 289 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) |
| 12 | 6, 7, 11 | syl2anc 411 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) |
| 13 | simp3r 1031 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
| 14 | simp13 1034 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ) | |
| 15 | zcn 9419 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 16 | zcn 9419 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | mulcom 8096 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) | |
| 18 | 15, 16, 17 | syl2an 289 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) |
| 19 | 13, 14, 18 | syl2anc 411 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) |
| 20 | 12, 19 | oveq12d 5992 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑀) + (𝑦 · 𝑁)) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) |
| 21 | 5, 20 | breqtrd 4088 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∥ ((𝑀 · 𝑥) + (𝑁 · 𝑦))) |
| 22 | breq2 4066 | . . . . . 6 ⊢ ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → (𝐾 ∥ (𝑀 gcd 𝑁) ↔ 𝐾 ∥ ((𝑀 · 𝑥) + (𝑁 · 𝑦)))) | |
| 23 | 21, 22 | syl5ibrcom 157 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁))) |
| 24 | 23 | 3expia 1210 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁)))) |
| 25 | 24 | rexlimdvv 2635 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁))) |
| 26 | 25 | ex 115 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁)))) |
| 27 | 2, 26 | mpid 42 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∃wrex 2489 class class class wbr 4062 (class class class)co 5974 ℂcc 7965 + caddc 7970 · cmul 7972 ℤcz 9414 ∥ cdvds 12264 gcd cgcd 12440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 df-gcd 12441 |
| This theorem is referenced by: dvdsgcdb 12500 dfgcd2 12501 mulgcd 12503 ncoprmgcdne1b 12577 mulgcddvds 12582 rpmulgcd2 12583 rpexp 12641 pythagtriplem4 12757 pcgcd1 12817 pockthlem 12845 lgsne0 15682 lgsquad2lem2 15726 |
| Copyright terms: Public domain | W3C validator |