Proof of Theorem pythagtriplem13
Step | Hyp | Ref
| Expression |
1 | | pythagtriplem13.1 |
. 2
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
2 | | pythagtriplem9 12201 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ) |
3 | 2 | nnzd 9308 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℤ) |
4 | | simp3r 1016 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴) |
5 | | 2z 9215 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
6 | | simp3 989 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℕ) |
7 | | simp2 988 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℕ) |
8 | 6, 7 | nnaddcld 8901 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℕ) |
9 | 8 | nnzd 9308 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℤ) |
10 | 9 | 3ad2ant1 1008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ) |
11 | | nnz 9206 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
12 | 11 | 3ad2ant1 1008 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℤ) |
13 | 12 | 3ad2ant1 1008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ) |
14 | | dvdsgcdb 11942 |
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ (𝐶 +
𝐵) ∈ ℤ ∧
𝐴 ∈ ℤ) →
((2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴))) |
15 | 5, 10, 13, 14 | mp3an2i 1332 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴))) |
16 | 15 | biimpar 295 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)) → (2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴)) |
17 | 16 | simprd 113 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)) → 2 ∥ 𝐴) |
18 | 4, 17 | mtand 655 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥
((𝐶 + 𝐵) gcd 𝐴)) |
19 | | pythagtriplem7 12199 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴)) |
20 | 19 | breq2d 3993 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥
(√‘(𝐶 + 𝐵)) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴))) |
21 | 18, 20 | mtbird 663 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥
(√‘(𝐶 + 𝐵))) |
22 | | pythagtriplem8 12200 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℕ) |
23 | 22 | nnzd 9308 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℤ) |
24 | | nnz 9206 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
25 | 24 | 3ad2ant3 1010 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℤ) |
26 | | nnz 9206 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
27 | 26 | 3ad2ant2 1009 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℤ) |
28 | 25, 27 | zsubcld 9314 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℤ) |
29 | 28 | 3ad2ant1 1008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℤ) |
30 | | dvdsgcdb 11942 |
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ (𝐶
− 𝐵) ∈ ℤ
∧ 𝐴 ∈ ℤ)
→ ((2 ∥ (𝐶
− 𝐵) ∧ 2 ∥
𝐴) ↔ 2 ∥ ((𝐶 − 𝐵) gcd 𝐴))) |
31 | 5, 29, 13, 30 | mp3an2i 1332 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 ∥ (𝐶 − 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 − 𝐵) gcd 𝐴))) |
32 | 31 | biimpar 295 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 − 𝐵) gcd 𝐴)) → (2 ∥ (𝐶 − 𝐵) ∧ 2 ∥ 𝐴)) |
33 | 32 | simprd 113 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 − 𝐵) gcd 𝐴)) → 2 ∥ 𝐴) |
34 | 4, 33 | mtand 655 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥
((𝐶 − 𝐵) gcd 𝐴)) |
35 | | pythagtriplem6 12198 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) = ((𝐶 − 𝐵) gcd 𝐴)) |
36 | 35 | breq2d 3993 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥
(√‘(𝐶 −
𝐵)) ↔ 2 ∥
((𝐶 − 𝐵) gcd 𝐴))) |
37 | 34, 36 | mtbird 663 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥
(√‘(𝐶 −
𝐵))) |
38 | | omoe 11829 |
. . . . 5
⊢
((((√‘(𝐶
+ 𝐵)) ∈ ℤ ∧
¬ 2 ∥ (√‘(𝐶 + 𝐵))) ∧ ((√‘(𝐶 − 𝐵)) ∈ ℤ ∧ ¬ 2 ∥
(√‘(𝐶 −
𝐵)))) → 2 ∥
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) |
39 | 3, 21, 23, 37, 38 | syl22anc 1229 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 2 ∥
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) |
40 | 28 | zred 9309 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
41 | 40 | 3ad2ant1 1008 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
42 | | simp13 1019 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
43 | 42 | nnred 8866 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℝ) |
44 | 8 | nnred 8866 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
45 | 44 | 3ad2ant1 1008 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ) |
46 | | nnrp 9595 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ+) |
47 | 46 | 3ad2ant2 1009 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ+) |
48 | 47 | 3ad2ant1 1008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈
ℝ+) |
49 | 43, 48 | ltsubrpd 9661 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) < 𝐶) |
50 | | nngt0 8878 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
51 | 50 | 3ad2ant2 1009 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
52 | 51 | 3ad2ant1 1008 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < 𝐵) |
53 | | simp12 1018 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
54 | 53 | nnred 8866 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℝ) |
55 | 54, 43 | ltaddposd 8423 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (0 < 𝐵 ↔ 𝐶 < (𝐶 + 𝐵))) |
56 | 52, 55 | mpbid 146 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 < (𝐶 + 𝐵)) |
57 | 41, 43, 45, 49, 56 | lttrd 8020 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) < (𝐶 + 𝐵)) |
58 | | pythagtriplem10 12197 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
59 | 58 | 3adant3 1007 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 − 𝐵)) |
60 | | 0re 7895 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
61 | | ltle 7982 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ (𝐶
− 𝐵) ∈ ℝ)
→ (0 < (𝐶 −
𝐵) → 0 ≤ (𝐶 − 𝐵))) |
62 | 60, 61 | mpan 421 |
. . . . . . . . . 10
⊢ ((𝐶 − 𝐵) ∈ ℝ → (0 < (𝐶 − 𝐵) → 0 ≤ (𝐶 − 𝐵))) |
63 | 41, 59, 62 | sylc 62 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 − 𝐵)) |
64 | | nngt0 8878 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
65 | 64 | 3ad2ant3 1010 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
66 | 65 | 3ad2ant1 1008 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < 𝐶) |
67 | 43, 54, 66, 52 | addgt0d 8415 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 + 𝐵)) |
68 | | ltle 7982 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ (𝐶 +
𝐵) ∈ ℝ) →
(0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
69 | 60, 68 | mpan 421 |
. . . . . . . . . 10
⊢ ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
70 | 45, 67, 69 | sylc 62 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵)) |
71 | 41, 63, 45, 70 | sqrtltd 11110 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 − 𝐵) < (𝐶 + 𝐵) ↔ (√‘(𝐶 − 𝐵)) < (√‘(𝐶 + 𝐵)))) |
72 | 57, 71 | mpbid 146 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) < (√‘(𝐶 + 𝐵))) |
73 | | nnsub 8892 |
. . . . . . . 8
⊢
(((√‘(𝐶
− 𝐵)) ∈ ℕ
∧ (√‘(𝐶 +
𝐵)) ∈ ℕ) →
((√‘(𝐶 −
𝐵)) <
(√‘(𝐶 + 𝐵)) ↔ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℕ)) |
74 | 22, 2, 73 | syl2anc 409 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 − 𝐵)) < (√‘(𝐶 + 𝐵)) ↔ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℕ)) |
75 | 72, 74 | mpbid 146 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℕ) |
76 | 75 | nnzd 9308 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℤ) |
77 | | evend2 11822 |
. . . . 5
⊢
(((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) ∈ ℤ →
(2 ∥ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ↔ (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ∈ ℤ)) |
78 | 76, 77 | syl 14 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ↔ (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ∈ ℤ)) |
79 | 39, 78 | mpbid 146 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ∈ ℤ) |
80 | 75 | nngt0d 8897 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 <
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) |
81 | 75 | nnred 8866 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℝ) |
82 | | halfpos2 9083 |
. . . . 5
⊢
(((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) ∈ ℝ →
(0 < ((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) ↔ 0 <
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2))) |
83 | 81, 82 | syl 14 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (0 <
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ↔ 0 < (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2))) |
84 | 80, 83 | mpbid 146 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 <
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) |
85 | | elnnz 9197 |
. . 3
⊢
((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) / 2) ∈ ℕ
↔ ((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵))) / 2) ∈ ℤ
∧ 0 < (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2))) |
86 | 79, 84, 85 | sylanbrc 414 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ∈ ℕ) |
87 | 1, 86 | eqeltrid 2252 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ) |