Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsn0fun | GIF version |
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
setsn0fun.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
setsn0fun.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
setsn0fun.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
setsn0fun | ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsn0fun.s | . 2 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
2 | structn0fun 12407 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun (𝑆 ∖ {∅})) | |
3 | setsn0fun.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
4 | setsn0fun.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
5 | structex 12406 | . . . . . . 7 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
6 | setsfun0 12430 | . . . . . . 7 ⊢ (((𝑆 ∈ V ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | |
7 | 5, 6 | sylanl1 400 | . . . . . 6 ⊢ (((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
8 | 7 | expcom 115 | . . . . 5 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
9 | 3, 4, 8 | syl2anc 409 | . . . 4 ⊢ (𝜑 → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
10 | 9 | com12 30 | . . 3 ⊢ ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
11 | 2, 10 | mpdan 418 | . 2 ⊢ (𝑆 Struct 𝑋 → (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
12 | 1, 11 | mpcom 36 | 1 ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ∅c0 3409 {csn 3576 〈cop 3579 class class class wbr 3982 Fun wfun 5182 (class class class)co 5842 Struct cstr 12390 sSet csts 12392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-struct 12396 df-sets 12401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |