ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsn0fun GIF version

Theorem setsn0fun 12431
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
setsn0fun.s (𝜑𝑆 Struct 𝑋)
setsn0fun.i (𝜑𝐼𝑈)
setsn0fun.e (𝜑𝐸𝑊)
Assertion
Ref Expression
setsn0fun (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))

Proof of Theorem setsn0fun
StepHypRef Expression
1 setsn0fun.s . 2 (𝜑𝑆 Struct 𝑋)
2 structn0fun 12407 . . 3 (𝑆 Struct 𝑋 → Fun (𝑆 ∖ {∅}))
3 setsn0fun.i . . . . 5 (𝜑𝐼𝑈)
4 setsn0fun.e . . . . 5 (𝜑𝐸𝑊)
5 structex 12406 . . . . . . 7 (𝑆 Struct 𝑋𝑆 ∈ V)
6 setsfun0 12430 . . . . . . 7 (((𝑆 ∈ V ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
75, 6sylanl1 400 . . . . . 6 (((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
87expcom 115 . . . . 5 ((𝐼𝑈𝐸𝑊) → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})))
93, 4, 8syl2anc 409 . . . 4 (𝜑 → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})))
109com12 30 . . 3 ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})))
112, 10mpdan 418 . 2 (𝑆 Struct 𝑋 → (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})))
121, 11mpcom 36 1 (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  Vcvv 2726  cdif 3113  c0 3409  {csn 3576  cop 3579   class class class wbr 3982  Fun wfun 5182  (class class class)co 5842   Struct cstr 12390   sSet csts 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-struct 12396  df-sets 12401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator