| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsn0fun | GIF version | ||
| Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsn0fun.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| setsn0fun.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| setsn0fun.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| setsn0fun | ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsn0fun.s | . 2 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 2 | structn0fun 12716 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun (𝑆 ∖ {∅})) | |
| 3 | setsn0fun.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 4 | setsn0fun.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 5 | structex 12715 | . . . . . . 7 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 6 | setsfun0 12739 | . . . . . . 7 ⊢ (((𝑆 ∈ V ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | |
| 7 | 5, 6 | sylanl1 402 | . . . . . 6 ⊢ (((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
| 8 | 7 | expcom 116 | . . . . 5 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
| 9 | 3, 4, 8 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
| 10 | 9 | com12 30 | . . 3 ⊢ ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
| 11 | 2, 10 | mpdan 421 | . 2 ⊢ (𝑆 Struct 𝑋 → (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
| 12 | 1, 11 | mpcom 36 | 1 ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 Vcvv 2763 ∖ cdif 3154 ∅c0 3451 {csn 3623 〈cop 3626 class class class wbr 4034 Fun wfun 5253 (class class class)co 5925 Struct cstr 12699 sSet csts 12701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-struct 12705 df-sets 12710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |