![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsn0fun | GIF version |
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
setsn0fun.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
setsn0fun.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
setsn0fun.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
setsn0fun | ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsn0fun.s | . 2 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
2 | structn0fun 12618 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun (𝑆 ∖ {∅})) | |
3 | setsn0fun.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
4 | setsn0fun.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
5 | structex 12617 | . . . . . . 7 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
6 | setsfun0 12641 | . . . . . . 7 ⊢ (((𝑆 ∈ V ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | |
7 | 5, 6 | sylanl1 402 | . . . . . 6 ⊢ (((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
8 | 7 | expcom 116 | . . . . 5 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
9 | 3, 4, 8 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
10 | 9 | com12 30 | . . 3 ⊢ ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
11 | 2, 10 | mpdan 421 | . 2 ⊢ (𝑆 Struct 𝑋 → (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
12 | 1, 11 | mpcom 36 | 1 ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ∅c0 3446 {csn 3618 〈cop 3621 class class class wbr 4029 Fun wfun 5240 (class class class)co 5910 Struct cstr 12601 sSet csts 12603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-res 4667 df-iota 5207 df-fun 5248 df-fv 5254 df-ov 5913 df-oprab 5914 df-mpo 5915 df-struct 12607 df-sets 12612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |