| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsn0fun | GIF version | ||
| Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsn0fun.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| setsn0fun.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
| setsn0fun.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| setsn0fun | ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsn0fun.s | . 2 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 2 | structn0fun 13045 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun (𝑆 ∖ {∅})) | |
| 3 | setsn0fun.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
| 4 | setsn0fun.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 5 | structex 13044 | . . . . . . 7 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 6 | setsfun0 13068 | . . . . . . 7 ⊢ (((𝑆 ∈ V ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | |
| 7 | 5, 6 | sylanl1 402 | . . . . . 6 ⊢ (((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
| 8 | 7 | expcom 116 | . . . . 5 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
| 9 | 3, 4, 8 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
| 10 | 9 | com12 30 | . . 3 ⊢ ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
| 11 | 2, 10 | mpdan 421 | . 2 ⊢ (𝑆 Struct 𝑋 → (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅}))) |
| 12 | 1, 11 | mpcom 36 | 1 ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ∅c0 3491 {csn 3666 〈cop 3669 class class class wbr 4083 Fun wfun 5312 (class class class)co 6001 Struct cstr 13028 sSet csts 13030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-struct 13034 df-sets 13039 |
| This theorem is referenced by: setsvtx 15852 setsiedg 15853 |
| Copyright terms: Public domain | W3C validator |