![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsn0fun | GIF version |
Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
setsn0fun.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
setsn0fun.i | ⊢ (𝜑 → 𝐼 ∈ 𝑈) |
setsn0fun.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
setsn0fun | ⊢ (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsn0fun.s | . 2 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
2 | structn0fun 12477 | . . 3 ⊢ (𝑆 Struct 𝑋 → Fun (𝑆 ∖ {∅})) | |
3 | setsn0fun.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑈) | |
4 | setsn0fun.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
5 | structex 12476 | . . . . . . 7 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
6 | setsfun0 12500 | . . . . . . 7 ⊢ (((𝑆 ∈ V ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})) | |
7 | 5, 6 | sylanl1 402 | . . . . . 6 ⊢ (((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})) |
8 | 7 | expcom 116 | . . . . 5 ⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))) |
9 | 3, 4, 8 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))) |
10 | 9 | com12 30 | . . 3 ⊢ ((𝑆 Struct 𝑋 ∧ Fun (𝑆 ∖ {∅})) → (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))) |
11 | 2, 10 | mpdan 421 | . 2 ⊢ (𝑆 Struct 𝑋 → (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))) |
12 | 1, 11 | mpcom 36 | 1 ⊢ (𝜑 → Fun ((𝑆 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 Vcvv 2739 ∖ cdif 3128 ∅c0 3424 {csn 3594 ⟨cop 3597 class class class wbr 4005 Fun wfun 5212 (class class class)co 5877 Struct cstr 12460 sSet csts 12462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-struct 12466 df-sets 12471 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |