| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantllr | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantllr | ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 402 | 1 ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad4ant13 513 ad4ant134 1241 ad5ant145 1268 r19.29an 2673 diffifi 7064 fimax2gtrilemstep 7070 cnegexlem3 8331 cnegex 8332 lemul12b 9016 climshftlemg 11821 prodeq2 12076 fprodmodd 12160 lcmdvds 12609 pw2dvdslemn 12695 dfgrp3mlem 13639 tgcl 14746 metss 15176 mpomulcn 15248 ivthinclemlr 15319 ivthinclemur 15321 nnnninfex 16418 |
| Copyright terms: Public domain | W3C validator |