ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantllr GIF version

Theorem adantllr 478
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
adantllr ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem adantllr
StepHypRef Expression
1 simpl 108 . 2 ((𝜑𝜏) → 𝜑)
2 adantl2.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylanl1 400 1 ((((𝜑𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  ad4ant13  510  ad4ant134  1212  r19.29an  2612  diffifi  6872  fimax2gtrilemstep  6878  cnegexlem3  8096  cnegex  8097  lemul12b  8777  climshftlemg  11265  prodeq2  11520  fprodmodd  11604  lcmdvds  12033  pw2dvdslemn  12119  tgcl  12858  metss  13288  ivthinclemlr  13409  ivthinclemur  13411
  Copyright terms: Public domain W3C validator