| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > adantllr | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| adantllr | ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 402 | 1 ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: ad4ant13 513 ad4ant134 1219 ad5ant145 1246 r19.29an 2639 diffifi 6955 fimax2gtrilemstep 6961 cnegexlem3 8203 cnegex 8204 lemul12b 8888 climshftlemg 11467 prodeq2 11722 fprodmodd 11806 lcmdvds 12247 pw2dvdslemn 12333 dfgrp3mlem 13230 tgcl 14300 metss 14730 mpomulcn 14802 ivthinclemlr 14873 ivthinclemur 14875 | 
| Copyright terms: Public domain | W3C validator |