| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantllr | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantllr | ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 402 | 1 ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad4ant13 513 ad4ant134 1219 ad5ant145 1246 r19.29an 2639 diffifi 6964 fimax2gtrilemstep 6970 cnegexlem3 8222 cnegex 8223 lemul12b 8907 climshftlemg 11486 prodeq2 11741 fprodmodd 11825 lcmdvds 12274 pw2dvdslemn 12360 dfgrp3mlem 13302 tgcl 14408 metss 14838 mpomulcn 14910 ivthinclemlr 14981 ivthinclemur 14983 nnnninfex 15777 |
| Copyright terms: Public domain | W3C validator |