| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantllr | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantllr | ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 402 | 1 ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad4ant13 513 ad4ant134 1241 ad5ant145 1268 r19.29an 2673 diffifi 7044 fimax2gtrilemstep 7050 cnegexlem3 8311 cnegex 8312 lemul12b 8996 climshftlemg 11799 prodeq2 12054 fprodmodd 12138 lcmdvds 12587 pw2dvdslemn 12673 dfgrp3mlem 13617 tgcl 14723 metss 15153 mpomulcn 15225 ivthinclemlr 15296 ivthinclemur 15298 nnnninfex 16319 |
| Copyright terms: Public domain | W3C validator |