| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantllr | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantllr | ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 402 | 1 ⊢ ((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad4ant13 513 ad4ant134 1220 ad5ant145 1247 r19.29an 2649 diffifi 7005 fimax2gtrilemstep 7011 cnegexlem3 8264 cnegex 8265 lemul12b 8949 climshftlemg 11683 prodeq2 11938 fprodmodd 12022 lcmdvds 12471 pw2dvdslemn 12557 dfgrp3mlem 13500 tgcl 14606 metss 15036 mpomulcn 15108 ivthinclemlr 15179 ivthinclemur 15181 nnnninfex 16094 |
| Copyright terms: Public domain | W3C validator |