ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprl GIF version

Theorem addnqprl 7684
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqprl ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))

Proof of Theorem addnqprl
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7630 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 addnqprllem 7682 . . . . . 6 (((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (1st𝐴)) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴)))
31, 2sylanl1 402 . . . . 5 (((𝐴P𝐺 ∈ (1st𝐴)) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴)))
43adantlr 477 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴)))
5 prop 7630 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 addnqprllem 7682 . . . . . 6 (((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (1st𝐵)) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)))
75, 6sylanl1 402 . . . . 5 (((𝐵P𝐻 ∈ (1st𝐵)) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)))
87adantll 476 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)))
94, 8jcad 307 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵))))
10 simpl 109 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))))
11 simpl 109 . . . . 5 ((𝐴P𝐺 ∈ (1st𝐴)) → 𝐴P)
12 simpl 109 . . . . 5 ((𝐵P𝐻 ∈ (1st𝐵)) → 𝐵P)
1311, 12anim12i 338 . . . 4 (((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) → (𝐴P𝐵P))
14 df-iplp 7623 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
15 addclnq 7530 . . . . 5 ((𝑟Q𝑠Q) → (𝑟 +Q 𝑠) ∈ Q)
1614, 15genpprecll 7669 . . . 4 ((𝐴P𝐵P) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (1st ‘(𝐴 +P 𝐵))))
1710, 13, 163syl 17 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (1st ‘(𝐴 +P 𝐵))))
189, 17syld 45 . 2 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (1st ‘(𝐴 +P 𝐵))))
19 simpr 110 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝑋Q)
20 elprnql 7636 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (1st𝐴)) → 𝐺Q)
211, 20sylan 283 . . . . . . . 8 ((𝐴P𝐺 ∈ (1st𝐴)) → 𝐺Q)
2221ad2antrr 488 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝐺Q)
23 elprnql 7636 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (1st𝐵)) → 𝐻Q)
245, 23sylan 283 . . . . . . . 8 ((𝐵P𝐻 ∈ (1st𝐵)) → 𝐻Q)
2524ad2antlr 489 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝐻Q)
26 addclnq 7530 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 +Q 𝐻) ∈ Q)
2722, 25, 26syl2anc 411 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐺 +Q 𝐻) ∈ Q)
28 recclnq 7547 . . . . . 6 ((𝐺 +Q 𝐻) ∈ Q → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
2927, 28syl 14 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
30 mulassnqg 7539 . . . . 5 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
3119, 29, 27, 30syl3anc 1252 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
32 mulclnq 7531 . . . . . 6 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
3319, 29, 32syl2anc 411 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
34 distrnqg 7542 . . . . 5 (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q𝐺Q𝐻Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
3533, 22, 25, 34syl3anc 1252 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
36 mulcomnqg 7538 . . . . . . . 8 (((*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
3729, 27, 36syl2anc 411 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
38 recidnq 7548 . . . . . . . 8 ((𝐺 +Q 𝐻) ∈ Q → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
3927, 38syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
4037, 39eqtrd 2242 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = 1Q)
4140oveq2d 5990 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = (𝑋 ·Q 1Q))
42 mulidnq 7544 . . . . . 6 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
4342adantl 277 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
4441, 43eqtrd 2242 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = 𝑋)
4531, 35, 443eqtr3d 2250 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) = 𝑋)
4645eleq1d 2278 . 2 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))
4718, 46sylibd 149 1 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cop 3649   class class class wbr 4062  cfv 5294  (class class class)co 5974  1st c1st 6254  2nd c2nd 6255  Qcnq 7435  1Qc1q 7436   +Q cplq 7437   ·Q cmq 7438  *Qcrq 7439   <Q cltq 7440  Pcnp 7446   +P cpp 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-inp 7621  df-iplp 7623
This theorem is referenced by:  addlocprlemlt  7686  addclpr  7692
  Copyright terms: Public domain W3C validator