ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprl GIF version

Theorem addnqprl 7589
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqprl ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))

Proof of Theorem addnqprl
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7535 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 addnqprllem 7587 . . . . . 6 (((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (1st𝐴)) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴)))
31, 2sylanl1 402 . . . . 5 (((𝐴P𝐺 ∈ (1st𝐴)) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴)))
43adantlr 477 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴)))
5 prop 7535 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 addnqprllem 7587 . . . . . 6 (((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (1st𝐵)) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)))
75, 6sylanl1 402 . . . . 5 (((𝐵P𝐻 ∈ (1st𝐵)) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)))
87adantll 476 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)))
94, 8jcad 307 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵))))
10 simpl 109 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))))
11 simpl 109 . . . . 5 ((𝐴P𝐺 ∈ (1st𝐴)) → 𝐴P)
12 simpl 109 . . . . 5 ((𝐵P𝐻 ∈ (1st𝐵)) → 𝐵P)
1311, 12anim12i 338 . . . 4 (((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) → (𝐴P𝐵P))
14 df-iplp 7528 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
15 addclnq 7435 . . . . 5 ((𝑟Q𝑠Q) → (𝑟 +Q 𝑠) ∈ Q)
1614, 15genpprecll 7574 . . . 4 ((𝐴P𝐵P) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (1st ‘(𝐴 +P 𝐵))))
1710, 13, 163syl 17 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (1st𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (1st𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (1st ‘(𝐴 +P 𝐵))))
189, 17syld 45 . 2 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (1st ‘(𝐴 +P 𝐵))))
19 simpr 110 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝑋Q)
20 elprnql 7541 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (1st𝐴)) → 𝐺Q)
211, 20sylan 283 . . . . . . . 8 ((𝐴P𝐺 ∈ (1st𝐴)) → 𝐺Q)
2221ad2antrr 488 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝐺Q)
23 elprnql 7541 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (1st𝐵)) → 𝐻Q)
245, 23sylan 283 . . . . . . . 8 ((𝐵P𝐻 ∈ (1st𝐵)) → 𝐻Q)
2524ad2antlr 489 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝐻Q)
26 addclnq 7435 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 +Q 𝐻) ∈ Q)
2722, 25, 26syl2anc 411 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐺 +Q 𝐻) ∈ Q)
28 recclnq 7452 . . . . . 6 ((𝐺 +Q 𝐻) ∈ Q → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
2927, 28syl 14 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
30 mulassnqg 7444 . . . . 5 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
3119, 29, 27, 30syl3anc 1249 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
32 mulclnq 7436 . . . . . 6 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
3319, 29, 32syl2anc 411 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
34 distrnqg 7447 . . . . 5 (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q𝐺Q𝐻Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
3533, 22, 25, 34syl3anc 1249 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
36 mulcomnqg 7443 . . . . . . . 8 (((*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
3729, 27, 36syl2anc 411 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
38 recidnq 7453 . . . . . . . 8 ((𝐺 +Q 𝐻) ∈ Q → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
3927, 38syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
4037, 39eqtrd 2226 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = 1Q)
4140oveq2d 5934 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = (𝑋 ·Q 1Q))
42 mulidnq 7449 . . . . . 6 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
4342adantl 277 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
4441, 43eqtrd 2226 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = 𝑋)
4531, 35, 443eqtr3d 2234 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) = 𝑋)
4645eleq1d 2262 . 2 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))
4718, 46sylibd 149 1 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cop 3621   class class class wbr 4029  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Qcnq 7340  1Qc1q 7341   +Q cplq 7342   ·Q cmq 7343  *Qcrq 7344   <Q cltq 7345  Pcnp 7351   +P cpp 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-inp 7526  df-iplp 7528
This theorem is referenced by:  addlocprlemlt  7591  addclpr  7597
  Copyright terms: Public domain W3C validator