Step | Hyp | Ref
| Expression |
1 | | prop 7437 |
. . . . . 6
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
2 | | addnqprulem 7490 |
. . . . . 6
⊢
(((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐺 ∈ (2nd
‘𝐴)) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈ (2nd ‘𝐴))) |
3 | 1, 2 | sylanl1 400 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈ (2nd ‘𝐴))) |
4 | 3 | adantlr 474 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈ (2nd ‘𝐴))) |
5 | | prop 7437 |
. . . . . 6
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
6 | | addnqprulem 7490 |
. . . . . 6
⊢
(((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐻 ∈ (2nd
‘𝐵)) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈ (2nd ‘𝐵))) |
7 | 5, 6 | sylanl1 400 |
. . . . 5
⊢ (((𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵)) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈ (2nd ‘𝐵))) |
8 | 7 | adantll 473 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈ (2nd ‘𝐵))) |
9 | 4, 8 | jcad 305 |
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈ (2nd ‘𝐴) ∧ ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈ (2nd ‘𝐵)))) |
10 | | simpl 108 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝐴 ∈ P
∧ 𝐺 ∈
(2nd ‘𝐴))
∧ (𝐵 ∈
P ∧ 𝐻
∈ (2nd ‘𝐵)))) |
11 | | simpl 108 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) → 𝐴 ∈
P) |
12 | | simpl 108 |
. . . . 5
⊢ ((𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵)) → 𝐵 ∈
P) |
13 | 11, 12 | anim12i 336 |
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) → (𝐴 ∈ P ∧
𝐵 ∈
P)) |
14 | | df-iplp 7430 |
. . . . 5
⊢
+P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑞 ∈ Q ∣
∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟 +Q
𝑠))}〉) |
15 | | addclnq 7337 |
. . . . 5
⊢ ((𝑟 ∈ Q ∧
𝑠 ∈ Q)
→ (𝑟
+Q 𝑠) ∈ Q) |
16 | 14, 15 | genppreclu 7477 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐺) ∈ (2nd ‘𝐴) ∧ ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈ (2nd ‘𝐵)) → (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) ∈ (2nd ‘(𝐴 +P
𝐵)))) |
17 | 10, 13, 16 | 3syl 17 |
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐺) ∈ (2nd ‘𝐴) ∧ ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈ (2nd ‘𝐵)) → (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) ∈ (2nd ‘(𝐴 +P
𝐵)))) |
18 | 9, 17 | syld 45 |
. 2
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) ∈ (2nd ‘(𝐴 +P
𝐵)))) |
19 | | simpr 109 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
𝑋 ∈
Q) |
20 | | elprnqu 7444 |
. . . . . . . . 9
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐺 ∈ (2nd
‘𝐴)) → 𝐺 ∈
Q) |
21 | 1, 20 | sylan 281 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) → 𝐺 ∈
Q) |
22 | 21 | ad2antrr 485 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
𝐺 ∈
Q) |
23 | | elprnqu 7444 |
. . . . . . . . 9
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐻 ∈ (2nd
‘𝐵)) → 𝐻 ∈
Q) |
24 | 5, 23 | sylan 281 |
. . . . . . . 8
⊢ ((𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵)) → 𝐻 ∈
Q) |
25 | 24 | ad2antlr 486 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
𝐻 ∈
Q) |
26 | | addclnq 7337 |
. . . . . . 7
⊢ ((𝐺 ∈ Q ∧
𝐻 ∈ Q)
→ (𝐺
+Q 𝐻) ∈ Q) |
27 | 22, 25, 26 | syl2anc 409 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
(𝐺
+Q 𝐻) ∈ Q) |
28 | | recclnq 7354 |
. . . . . 6
⊢ ((𝐺 +Q
𝐻) ∈ Q
→ (*Q‘(𝐺 +Q 𝐻)) ∈
Q) |
29 | 27, 28 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
(*Q‘(𝐺 +Q 𝐻)) ∈
Q) |
30 | | mulassnqg 7346 |
. . . . 5
⊢ ((𝑋 ∈ Q ∧
(*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧
(𝐺
+Q 𝐻) ∈ Q) → ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q
((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)))) |
31 | 19, 29, 27, 30 | syl3anc 1233 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q
((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)))) |
32 | | mulclnq 7338 |
. . . . . 6
⊢ ((𝑋 ∈ Q ∧
(*Q‘(𝐺 +Q 𝐻)) ∈ Q)
→ (𝑋
·Q (*Q‘(𝐺 +Q
𝐻))) ∈
Q) |
33 | 19, 29, 32 | syl2anc 409 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
(𝑋
·Q (*Q‘(𝐺 +Q
𝐻))) ∈
Q) |
34 | | distrnqg 7349 |
. . . . 5
⊢ (((𝑋
·Q (*Q‘(𝐺 +Q
𝐻))) ∈ Q
∧ 𝐺 ∈
Q ∧ 𝐻
∈ Q) → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻))) |
35 | 33, 22, 25, 34 | syl3anc 1233 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻))) |
36 | | mulcomnqg 7345 |
. . . . . . . 8
⊢
(((*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧
(𝐺
+Q 𝐻) ∈ Q) →
((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻)
·Q (*Q‘(𝐺 +Q
𝐻)))) |
37 | 29, 27, 36 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻)
·Q (*Q‘(𝐺 +Q
𝐻)))) |
38 | | recidnq 7355 |
. . . . . . . 8
⊢ ((𝐺 +Q
𝐻) ∈ Q
→ ((𝐺
+Q 𝐻) ·Q
(*Q‘(𝐺 +Q 𝐻))) =
1Q) |
39 | 27, 38 | syl 14 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) ·Q
(*Q‘(𝐺 +Q 𝐻))) =
1Q) |
40 | 37, 39 | eqtrd 2203 |
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)) =
1Q) |
41 | 40 | oveq2d 5869 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
(𝑋
·Q ((*Q‘(𝐺 +Q
𝐻))
·Q (𝐺 +Q 𝐻))) = (𝑋 ·Q
1Q)) |
42 | | mulidnq 7351 |
. . . . . 6
⊢ (𝑋 ∈ Q →
(𝑋
·Q 1Q) = 𝑋) |
43 | 42 | adantl 275 |
. . . . 5
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
(𝑋
·Q 1Q) = 𝑋) |
44 | 41, 43 | eqtrd 2203 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
(𝑋
·Q ((*Q‘(𝐺 +Q
𝐻))
·Q (𝐺 +Q 𝐻))) = 𝑋) |
45 | 31, 35, 44 | 3eqtr3d 2211 |
. . 3
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
(((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) = 𝑋) |
46 | 45 | eleq1d 2239 |
. 2
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) ∈ (2nd ‘(𝐴 +P
𝐵)) ↔ 𝑋 ∈ (2nd
‘(𝐴
+P 𝐵)))) |
47 | 18, 46 | sylibd 148 |
1
⊢ ((((𝐴 ∈ P ∧
𝐺 ∈ (2nd
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝐻 ∈ (2nd
‘𝐵))) ∧ 𝑋 ∈ Q) →
((𝐺
+Q 𝐻) <Q 𝑋 → 𝑋 ∈ (2nd ‘(𝐴 +P
𝐵)))) |