ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqpru GIF version

Theorem addnqpru 7479
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqpru ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))

Proof of Theorem addnqpru
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7424 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 addnqprulem 7477 . . . . . 6 (((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
31, 2sylanl1 400 . . . . 5 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
43adantlr 474 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
5 prop 7424 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 addnqprulem 7477 . . . . . 6 (((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
75, 6sylanl1 400 . . . . 5 (((𝐵P𝐻 ∈ (2nd𝐵)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
87adantll 473 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
94, 8jcad 305 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵))))
10 simpl 108 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))))
11 simpl 108 . . . . 5 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐴P)
12 simpl 108 . . . . 5 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐵P)
1311, 12anim12i 336 . . . 4 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → (𝐴P𝐵P))
14 df-iplp 7417 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
15 addclnq 7324 . . . . 5 ((𝑟Q𝑠Q) → (𝑟 +Q 𝑠) ∈ Q)
1614, 15genppreclu 7464 . . . 4 ((𝐴P𝐵P) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
1710, 13, 163syl 17 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
189, 17syld 45 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
19 simpr 109 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝑋Q)
20 elprnqu 7431 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
211, 20sylan 281 . . . . . . . 8 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
2221ad2antrr 485 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐺Q)
23 elprnqu 7431 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
245, 23sylan 281 . . . . . . . 8 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
2524ad2antlr 486 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐻Q)
26 addclnq 7324 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 +Q 𝐻) ∈ Q)
2722, 25, 26syl2anc 409 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 +Q 𝐻) ∈ Q)
28 recclnq 7341 . . . . . 6 ((𝐺 +Q 𝐻) ∈ Q → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
2927, 28syl 14 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
30 mulassnqg 7333 . . . . 5 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
3119, 29, 27, 30syl3anc 1233 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
32 mulclnq 7325 . . . . . 6 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
3319, 29, 32syl2anc 409 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
34 distrnqg 7336 . . . . 5 (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q𝐺Q𝐻Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
3533, 22, 25, 34syl3anc 1233 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
36 mulcomnqg 7332 . . . . . . . 8 (((*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
3729, 27, 36syl2anc 409 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
38 recidnq 7342 . . . . . . . 8 ((𝐺 +Q 𝐻) ∈ Q → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
3927, 38syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
4037, 39eqtrd 2203 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = 1Q)
4140oveq2d 5866 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = (𝑋 ·Q 1Q))
42 mulidnq 7338 . . . . . 6 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
4342adantl 275 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
4441, 43eqtrd 2203 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = 𝑋)
4531, 35, 443eqtr3d 2211 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) = 𝑋)
4645eleq1d 2239 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ 𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
4718, 46sylibd 148 1 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cop 3584   class class class wbr 3987  cfv 5196  (class class class)co 5850  1st c1st 6114  2nd c2nd 6115  Qcnq 7229  1Qc1q 7230   +Q cplq 7231   ·Q cmq 7232  *Qcrq 7233   <Q cltq 7234  Pcnp 7240   +P cpp 7242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-pli 7254  df-mi 7255  df-lti 7256  df-plpq 7293  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-plqqs 7298  df-mqqs 7299  df-1nqqs 7300  df-rq 7301  df-ltnqqs 7302  df-inp 7415  df-iplp 7417
This theorem is referenced by:  addlocprlemeq  7482  addlocprlemgt  7483  addclpr  7486
  Copyright terms: Public domain W3C validator