ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqpru GIF version

Theorem addnqpru 7186
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqpru ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))

Proof of Theorem addnqpru
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7131 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 addnqprulem 7184 . . . . . 6 (((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
31, 2sylanl1 395 . . . . 5 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
43adantlr 462 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
5 prop 7131 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 addnqprulem 7184 . . . . . 6 (((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
75, 6sylanl1 395 . . . . 5 (((𝐵P𝐻 ∈ (2nd𝐵)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
87adantll 461 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
94, 8jcad 302 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵))))
10 simpl 108 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))))
11 simpl 108 . . . . 5 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐴P)
12 simpl 108 . . . . 5 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐵P)
1311, 12anim12i 332 . . . 4 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → (𝐴P𝐵P))
14 df-iplp 7124 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
15 addclnq 7031 . . . . 5 ((𝑟Q𝑠Q) → (𝑟 +Q 𝑠) ∈ Q)
1614, 15genppreclu 7171 . . . 4 ((𝐴P𝐵P) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
1710, 13, 163syl 17 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
189, 17syld 45 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
19 simpr 109 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝑋Q)
20 elprnqu 7138 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
211, 20sylan 278 . . . . . . . 8 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
2221ad2antrr 473 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐺Q)
23 elprnqu 7138 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
245, 23sylan 278 . . . . . . . 8 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
2524ad2antlr 474 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐻Q)
26 addclnq 7031 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 +Q 𝐻) ∈ Q)
2722, 25, 26syl2anc 404 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 +Q 𝐻) ∈ Q)
28 recclnq 7048 . . . . . 6 ((𝐺 +Q 𝐻) ∈ Q → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
2927, 28syl 14 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
30 mulassnqg 7040 . . . . 5 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
3119, 29, 27, 30syl3anc 1181 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
32 mulclnq 7032 . . . . . 6 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
3319, 29, 32syl2anc 404 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
34 distrnqg 7043 . . . . 5 (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q𝐺Q𝐻Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
3533, 22, 25, 34syl3anc 1181 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
36 mulcomnqg 7039 . . . . . . . 8 (((*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
3729, 27, 36syl2anc 404 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
38 recidnq 7049 . . . . . . . 8 ((𝐺 +Q 𝐻) ∈ Q → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
3927, 38syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
4037, 39eqtrd 2127 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = 1Q)
4140oveq2d 5706 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = (𝑋 ·Q 1Q))
42 mulidnq 7045 . . . . . 6 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
4342adantl 272 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
4441, 43eqtrd 2127 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = 𝑋)
4531, 35, 443eqtr3d 2135 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) = 𝑋)
4645eleq1d 2163 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ 𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
4718, 46sylibd 148 1 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  cop 3469   class class class wbr 3867  cfv 5049  (class class class)co 5690  1st c1st 5947  2nd c2nd 5948  Qcnq 6936  1Qc1q 6937   +Q cplq 6938   ·Q cmq 6939  *Qcrq 6940   <Q cltq 6941  Pcnp 6947   +P cpp 6949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-pli 6961  df-mi 6962  df-lti 6963  df-plpq 7000  df-mpq 7001  df-enq 7003  df-nqqs 7004  df-plqqs 7005  df-mqqs 7006  df-1nqqs 7007  df-rq 7008  df-ltnqqs 7009  df-inp 7122  df-iplp 7124
This theorem is referenced by:  addlocprlemeq  7189  addlocprlemgt  7190  addclpr  7193
  Copyright terms: Public domain W3C validator