ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv GIF version

Theorem isocnv 5858
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isocnv (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))

Proof of Theorem isocnv
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 5517 . . . 4 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵1-1-onto𝐴)
21adantr 276 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐵1-1-onto𝐴)
3 f1ocnvfv2 5825 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑧𝐵) → (𝐻‘(𝐻𝑧)) = 𝑧)
43adantrr 479 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑧)) = 𝑧)
5 f1ocnvfv2 5825 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑤𝐵) → (𝐻‘(𝐻𝑤)) = 𝑤)
65adantrl 478 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑤)) = 𝑤)
74, 6breq12d 4046 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
87adantlr 477 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
9 f1of 5504 . . . . . . 7 (𝐻:𝐵1-1-onto𝐴𝐻:𝐵𝐴)
101, 9syl 14 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵𝐴)
11 ffvelcdm 5695 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑧𝐵) → (𝐻𝑧) ∈ 𝐴)
12 ffvelcdm 5695 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑤𝐵) → (𝐻𝑤) ∈ 𝐴)
1311, 12anim12dan 600 . . . . . . . 8 ((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴))
14 breq1 4036 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → (𝑥𝑅𝑦 ↔ (𝐻𝑧)𝑅𝑦))
15 fveq2 5558 . . . . . . . . . . . 12 (𝑥 = (𝐻𝑧) → (𝐻𝑥) = (𝐻‘(𝐻𝑧)))
1615breq1d 4043 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)))
1714, 16bibi12d 235 . . . . . . . . . 10 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦))))
18 bicom 140 . . . . . . . . . 10 (((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦))
1917, 18bitrdi 196 . . . . . . . . 9 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦)))
20 fveq2 5558 . . . . . . . . . . 11 (𝑦 = (𝐻𝑤) → (𝐻𝑦) = (𝐻‘(𝐻𝑤)))
2120breq2d 4045 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤))))
22 breq2 4037 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻𝑧)𝑅𝑦 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2321, 22bibi12d 235 . . . . . . . . 9 (𝑦 = (𝐻𝑤) → (((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
2419, 23rspc2va 2882 . . . . . . . 8 ((((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2513, 24sylan 283 . . . . . . 7 (((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2625an32s 568 . . . . . 6 (((𝐻:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2710, 26sylanl1 402 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
288, 27bitr3d 190 . . . 4 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2928ralrimivva 2579 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
302, 29jca 306 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
31 df-isom 5267 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
32 df-isom 5267 . 2 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
3330, 31, 323imtr4i 201 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475   class class class wbr 4033  ccnv 4662  wf 5254  1-1-ontowf1o 5257  cfv 5258   Isom wiso 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267
This theorem is referenced by:  isores1  5861  isose  5868  isopo  5870  isoso  5872  isoti  7073  infrenegsupex  9668  infxrnegsupex  11428  relogiso  15109
  Copyright terms: Public domain W3C validator