| Step | Hyp | Ref
 | Expression | 
| 1 |   | nqpi 7445 | 
. . . 4
⊢ (𝐴 ∈ Q →
∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q
)) | 
| 2 |   | nq0nn 7509 | 
. . . 4
⊢ (𝐵 ∈
Q0 → ∃𝑧∃𝑤((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0
)) | 
| 3 | 1, 2 | anim12i 338 | 
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈
Q0) → (∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
∃𝑧∃𝑤((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0
))) | 
| 4 |   | ee4anv 1953 | 
. . 3
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
↔ (∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
∃𝑧∃𝑤((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0
))) | 
| 5 | 3, 4 | sylibr 134 | 
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈
Q0) → ∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0
))) | 
| 6 |   | oveq12 5931 | 
. . . . . . 7
⊢ ((𝐴 = [〈𝑥, 𝑦〉] ~Q ∧
𝐵 = [〈𝑧, 𝑤〉] ~Q0 ) →
(𝐴
+Q0 𝐵) = ([〈𝑥, 𝑦〉] ~Q
+Q0 [〈𝑧, 𝑤〉] ~Q0
)) | 
| 7 | 6 | ad2ant2l 508 | 
. . . . . 6
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) = ([〈𝑥, 𝑦〉] ~Q
+Q0 [〈𝑧, 𝑤〉] ~Q0
)) | 
| 8 |   | nqnq0pi 7505 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ N ∧
𝑦 ∈ N)
→ [〈𝑥, 𝑦〉]
~Q0 = [〈𝑥, 𝑦〉] ~Q
) | 
| 9 | 8 | oveq1d 5937 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ N ∧
𝑦 ∈ N)
→ ([〈𝑥, 𝑦〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑥, 𝑦〉]
~Q +Q0 [〈𝑧, 𝑤〉] ~Q0
)) | 
| 10 | 9 | adantr 276 | 
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ([〈𝑥, 𝑦〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑥, 𝑦〉]
~Q +Q0 [〈𝑧, 𝑤〉] ~Q0
)) | 
| 11 |   | pinn 7376 | 
. . . . . . . . 9
⊢ (𝑥 ∈ N →
𝑥 ∈
ω) | 
| 12 |   | addnnnq0 7516 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑥, 𝑦〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) | 
| 13 | 11, 12 | sylanl1 402 | 
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ([〈𝑥, 𝑦〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) | 
| 14 | 10, 13 | eqtr3d 2231 | 
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ([〈𝑥, 𝑦〉] ~Q
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) | 
| 15 | 14 | ad2ant2r 509 | 
. . . . . 6
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ ([〈𝑥, 𝑦〉]
~Q +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) | 
| 16 | 7, 15 | eqtrd 2229 | 
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) = [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q0
) | 
| 17 |   | pinn 7376 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ N →
𝑦 ∈
ω) | 
| 18 |   | nnmcl 6539 | 
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈
ω) | 
| 19 | 17, 18 | sylan 283 | 
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ ω) →
(𝑦 ·o
𝑧) ∈
ω) | 
| 20 | 19 | ad2ant2lr 510 | 
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → (𝑦
·o 𝑧)
∈ ω) | 
| 21 |   | mulpiord 7384 | 
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·N 𝑤) = (𝑥 ·o 𝑤)) | 
| 22 |   | mulclpi 7395 | 
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·N 𝑤) ∈ N) | 
| 23 | 21, 22 | eqeltrrd 2274 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·o 𝑤)
∈ N) | 
| 24 | 23 | ad2ant2rl 511 | 
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → (𝑥
·o 𝑤)
∈ N) | 
| 25 |   | pinn 7376 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ·o 𝑤) ∈ N →
(𝑥 ·o
𝑤) ∈
ω) | 
| 26 |   | nnacom 6542 | 
. . . . . . . . . . . . 13
⊢ (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ ω) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧))) | 
| 27 | 25, 26 | sylan2 286 | 
. . . . . . . . . . . 12
⊢ (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ N) →
((𝑦 ·o
𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧))) | 
| 28 | 20, 24, 27 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧))) | 
| 29 |   | nnppipi 7410 | 
. . . . . . . . . . . 12
⊢ (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ N) →
((𝑦 ·o
𝑧) +o (𝑥 ·o 𝑤)) ∈
N) | 
| 30 | 20, 24, 29 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) ∈ N) | 
| 31 | 28, 30 | eqeltrrd 2274 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N) | 
| 32 |   | mulpiord 7384 | 
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) = (𝑦 ·o 𝑤)) | 
| 33 |   | mulclpi 7395 | 
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) ∈ N) | 
| 34 | 32, 33 | eqeltrrd 2274 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·o 𝑤)
∈ N) | 
| 35 | 34 | ad2ant2l 508 | 
. . . . . . . . . 10
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → (𝑦
·o 𝑤)
∈ N) | 
| 36 |   | opelxpi 4695 | 
. . . . . . . . . 10
⊢ ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧
(𝑦 ·o
𝑤) ∈ N)
→ 〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉 ∈
(N × N)) | 
| 37 | 31, 35, 36 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → 〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉 ∈ (N ×
N)) | 
| 38 |   | enqex 7427 | 
. . . . . . . . . 10
⊢ 
~Q ∈ V | 
| 39 | 38 | ecelqsi 6648 | 
. . . . . . . . 9
⊢
(〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉 ∈
(N × N) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
((N × N) / ~Q
)) | 
| 40 | 37, 39 | syl 14 | 
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
((N × N) / ~Q
)) | 
| 41 |   | df-nqqs 7415 | 
. . . . . . . 8
⊢
Q = ((N × N) /
~Q ) | 
| 42 | 40, 41 | eleqtrrdi 2290 | 
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
Q) | 
| 43 |   | nqnq0pi 7505 | 
. . . . . . . . 9
⊢ ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧
(𝑦 ·o
𝑤) ∈ N)
→ [〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 = [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q
) | 
| 44 | 43 | eleq1d 2265 | 
. . . . . . . 8
⊢ ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧
(𝑦 ·o
𝑤) ∈ N)
→ ([〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ∈ Q ↔ [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
Q)) | 
| 45 | 31, 35, 44 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ([〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q0 ∈
Q ↔ [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
Q)) | 
| 46 | 42, 45 | mpbird 167 | 
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q0 ∈
Q) | 
| 47 | 46 | ad2ant2r 509 | 
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ [〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ∈ Q) | 
| 48 | 16, 47 | eqeltrd 2273 | 
. . . 4
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) ∈ Q) | 
| 49 | 48 | exlimivv 1911 | 
. . 3
⊢
(∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) ∈ Q) | 
| 50 | 49 | exlimivv 1911 | 
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) ∈ Q) | 
| 51 | 5, 50 | syl 14 | 
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈
Q0) → (𝐴 +Q0 𝐵) ∈
Q) |