Step | Hyp | Ref
| Expression |
1 | | nqpi 7319 |
. . . 4
⊢ (𝐴 ∈ Q →
∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q
)) |
2 | | nq0nn 7383 |
. . . 4
⊢ (𝐵 ∈
Q0 → ∃𝑧∃𝑤((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0
)) |
3 | 1, 2 | anim12i 336 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈
Q0) → (∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
∃𝑧∃𝑤((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0
))) |
4 | | ee4anv 1922 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
↔ (∃𝑥∃𝑦((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
∃𝑧∃𝑤((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0
))) |
5 | 3, 4 | sylibr 133 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈
Q0) → ∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0
))) |
6 | | oveq12 5851 |
. . . . . . 7
⊢ ((𝐴 = [〈𝑥, 𝑦〉] ~Q ∧
𝐵 = [〈𝑧, 𝑤〉] ~Q0 ) →
(𝐴
+Q0 𝐵) = ([〈𝑥, 𝑦〉] ~Q
+Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
7 | 6 | ad2ant2l 500 |
. . . . . 6
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) = ([〈𝑥, 𝑦〉] ~Q
+Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
8 | | nqnq0pi 7379 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ N ∧
𝑦 ∈ N)
→ [〈𝑥, 𝑦〉]
~Q0 = [〈𝑥, 𝑦〉] ~Q
) |
9 | 8 | oveq1d 5857 |
. . . . . . . . 9
⊢ ((𝑥 ∈ N ∧
𝑦 ∈ N)
→ ([〈𝑥, 𝑦〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑥, 𝑦〉]
~Q +Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
10 | 9 | adantr 274 |
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ([〈𝑥, 𝑦〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑥, 𝑦〉]
~Q +Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
11 | | pinn 7250 |
. . . . . . . . 9
⊢ (𝑥 ∈ N →
𝑥 ∈
ω) |
12 | | addnnnq0 7390 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑥, 𝑦〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) |
13 | 11, 12 | sylanl1 400 |
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ([〈𝑥, 𝑦〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) |
14 | 10, 13 | eqtr3d 2200 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ([〈𝑥, 𝑦〉] ~Q
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) |
15 | 14 | ad2ant2r 501 |
. . . . . 6
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ ([〈𝑥, 𝑦〉]
~Q +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) |
16 | 7, 15 | eqtrd 2198 |
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) = [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q0
) |
17 | | pinn 7250 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ N →
𝑦 ∈
ω) |
18 | | nnmcl 6449 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈
ω) |
19 | 17, 18 | sylan 281 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ ω) →
(𝑦 ·o
𝑧) ∈
ω) |
20 | 19 | ad2ant2lr 502 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → (𝑦
·o 𝑧)
∈ ω) |
21 | | mulpiord 7258 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·N 𝑤) = (𝑥 ·o 𝑤)) |
22 | | mulclpi 7269 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·N 𝑤) ∈ N) |
23 | 21, 22 | eqeltrrd 2244 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·o 𝑤)
∈ N) |
24 | 23 | ad2ant2rl 503 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → (𝑥
·o 𝑤)
∈ N) |
25 | | pinn 7250 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ·o 𝑤) ∈ N →
(𝑥 ·o
𝑤) ∈
ω) |
26 | | nnacom 6452 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ ω) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧))) |
27 | 25, 26 | sylan2 284 |
. . . . . . . . . . . 12
⊢ (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ N) →
((𝑦 ·o
𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧))) |
28 | 20, 24, 27 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧))) |
29 | | nnppipi 7284 |
. . . . . . . . . . . 12
⊢ (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ N) →
((𝑦 ·o
𝑧) +o (𝑥 ·o 𝑤)) ∈
N) |
30 | 20, 24, 29 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) ∈ N) |
31 | 28, 30 | eqeltrrd 2244 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N) |
32 | | mulpiord 7258 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) = (𝑦 ·o 𝑤)) |
33 | | mulclpi 7269 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) ∈ N) |
34 | 32, 33 | eqeltrrd 2244 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·o 𝑤)
∈ N) |
35 | 34 | ad2ant2l 500 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → (𝑦
·o 𝑤)
∈ N) |
36 | | opelxpi 4636 |
. . . . . . . . . 10
⊢ ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧
(𝑦 ·o
𝑤) ∈ N)
→ 〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉 ∈
(N × N)) |
37 | 31, 35, 36 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → 〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉 ∈ (N ×
N)) |
38 | | enqex 7301 |
. . . . . . . . . 10
⊢
~Q ∈ V |
39 | 38 | ecelqsi 6555 |
. . . . . . . . 9
⊢
(〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉 ∈
(N × N) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
((N × N) / ~Q
)) |
40 | 37, 39 | syl 14 |
. . . . . . . 8
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
((N × N) / ~Q
)) |
41 | | df-nqqs 7289 |
. . . . . . . 8
⊢
Q = ((N × N) /
~Q ) |
42 | 40, 41 | eleqtrrdi 2260 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
Q) |
43 | | nqnq0pi 7379 |
. . . . . . . . 9
⊢ ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧
(𝑦 ·o
𝑤) ∈ N)
→ [〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 = [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q
) |
44 | 43 | eleq1d 2235 |
. . . . . . . 8
⊢ ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧
(𝑦 ·o
𝑤) ∈ N)
→ ([〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ∈ Q ↔ [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
Q)) |
45 | 31, 35, 44 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → ([〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q0 ∈
Q ↔ [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q ∈
Q)) |
46 | 42, 45 | mpbird 166 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈ ω
∧ 𝑤 ∈
N)) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q0 ∈
Q) |
47 | 46 | ad2ant2r 501 |
. . . . 5
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ [〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ∈ Q) |
48 | 16, 47 | eqeltrd 2243 |
. . . 4
⊢ ((((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ 𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) ∈ Q) |
49 | 48 | exlimivv 1884 |
. . 3
⊢
(∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) ∈ Q) |
50 | 49 | exlimivv 1884 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤(((𝑥 ∈ N ∧ 𝑦 ∈ N) ∧
𝐴 = [〈𝑥, 𝑦〉] ~Q ) ∧
((𝑧 ∈ ω ∧
𝑤 ∈ N)
∧ 𝐵 = [〈𝑧, 𝑤〉] ~Q0 ))
→ (𝐴
+Q0 𝐵) ∈ Q) |
51 | 5, 50 | syl 14 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈
Q0) → (𝐴 +Q0 𝐵) ∈
Q) |