ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpnq0nq GIF version

Theorem nqpnq0nq 7427
Description: A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
nqpnq0nq ((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)

Proof of Theorem nqpnq0nq
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7352 . . . 4 (𝐴Q → ∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ))
2 nq0nn 7416 . . . 4 (𝐵Q0 → ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 ))
31, 2anim12i 338 . . 3 ((𝐴Q𝐵Q0) → (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
4 ee4anv 1932 . . 3 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) ↔ (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
53, 4sylibr 134 . 2 ((𝐴Q𝐵Q0) → ∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
6 oveq12 5874 . . . . . . 7 ((𝐴 = [⟨𝑥, 𝑦⟩] ~Q𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 ) → (𝐴 +Q0 𝐵) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
76ad2ant2l 508 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
8 nqnq0pi 7412 . . . . . . . . . 10 ((𝑥N𝑦N) → [⟨𝑥, 𝑦⟩] ~Q0 = [⟨𝑥, 𝑦⟩] ~Q )
98oveq1d 5880 . . . . . . . . 9 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
109adantr 276 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
11 pinn 7283 . . . . . . . . 9 (𝑥N𝑥 ∈ ω)
12 addnnnq0 7423 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
1311, 12sylanl1 402 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
1410, 13eqtr3d 2210 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
1514ad2ant2r 509 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
167, 15eqtrd 2208 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
17 pinn 7283 . . . . . . . . . . . . . 14 (𝑦N𝑦 ∈ ω)
18 nnmcl 6472 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈ ω)
1917, 18sylan 283 . . . . . . . . . . . . 13 ((𝑦N𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈ ω)
2019ad2ant2lr 510 . . . . . . . . . . . 12 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·o 𝑧) ∈ ω)
21 mulpiord 7291 . . . . . . . . . . . . . 14 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) = (𝑥 ·o 𝑤))
22 mulclpi 7302 . . . . . . . . . . . . . 14 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
2321, 22eqeltrrd 2253 . . . . . . . . . . . . 13 ((𝑥N𝑤N) → (𝑥 ·o 𝑤) ∈ N)
2423ad2ant2rl 511 . . . . . . . . . . . 12 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑥 ·o 𝑤) ∈ N)
25 pinn 7283 . . . . . . . . . . . . 13 ((𝑥 ·o 𝑤) ∈ N → (𝑥 ·o 𝑤) ∈ ω)
26 nnacom 6475 . . . . . . . . . . . . 13 (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ ω) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)))
2725, 26sylan2 286 . . . . . . . . . . . 12 (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ N) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)))
2820, 24, 27syl2anc 411 . . . . . . . . . . 11 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)))
29 nnppipi 7317 . . . . . . . . . . . 12 (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ N) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) ∈ N)
3020, 24, 29syl2anc 411 . . . . . . . . . . 11 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) ∈ N)
3128, 30eqeltrrd 2253 . . . . . . . . . 10 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N)
32 mulpiord 7291 . . . . . . . . . . . 12 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤))
33 mulclpi 7302 . . . . . . . . . . . 12 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
3432, 33eqeltrrd 2253 . . . . . . . . . . 11 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) ∈ N)
3534ad2ant2l 508 . . . . . . . . . 10 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·o 𝑤) ∈ N)
36 opelxpi 4652 . . . . . . . . . 10 ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧ (𝑦 ·o 𝑤) ∈ N) → ⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩ ∈ (N × N))
3731, 35, 36syl2anc 411 . . . . . . . . 9 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩ ∈ (N × N))
38 enqex 7334 . . . . . . . . . 10 ~Q ∈ V
3938ecelqsi 6579 . . . . . . . . 9 (⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩ ∈ (N × N) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
4037, 39syl 14 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
41 df-nqqs 7322 . . . . . . . 8 Q = ((N × N) / ~Q )
4240, 41eleqtrrdi 2269 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~QQ)
43 nqnq0pi 7412 . . . . . . . . 9 ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧ (𝑦 ·o 𝑤) ∈ N) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q )
4443eleq1d 2244 . . . . . . . 8 ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧ (𝑦 ·o 𝑤) ∈ N) → ([⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0Q ↔ [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~QQ))
4531, 35, 44syl2anc 411 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0Q ↔ [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~QQ))
4642, 45mpbird 167 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0Q)
4746ad2ant2r 509 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0Q)
4816, 47eqeltrd 2252 . . . 4 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
4948exlimivv 1894 . . 3 (∃𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
5049exlimivv 1894 . 2 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
515, 50syl 14 1 ((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1490  wcel 2146  cop 3592  ωcom 4583   × cxp 4618  (class class class)co 5865   +o coa 6404   ·o comu 6405  [cec 6523   / cqs 6524  Ncnpi 7246   ·N cmi 7248   ~Q ceq 7253  Qcnq 7254   ~Q0 ceq0 7260  Q0cnq0 7261   +Q0 cplq0 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-mi 7280  df-enq 7321  df-nqqs 7322  df-enq0 7398  df-nq0 7399  df-plq0 7401
This theorem is referenced by:  prarloclemcalc  7476
  Copyright terms: Public domain W3C validator