ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpnq0nq GIF version

Theorem nqpnq0nq 7394
Description: A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
nqpnq0nq ((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)

Proof of Theorem nqpnq0nq
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7319 . . . 4 (𝐴Q → ∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ))
2 nq0nn 7383 . . . 4 (𝐵Q0 → ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 ))
31, 2anim12i 336 . . 3 ((𝐴Q𝐵Q0) → (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
4 ee4anv 1922 . . 3 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) ↔ (∃𝑥𝑦((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
53, 4sylibr 133 . 2 ((𝐴Q𝐵Q0) → ∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )))
6 oveq12 5851 . . . . . . 7 ((𝐴 = [⟨𝑥, 𝑦⟩] ~Q𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 ) → (𝐴 +Q0 𝐵) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
76ad2ant2l 500 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
8 nqnq0pi 7379 . . . . . . . . . 10 ((𝑥N𝑦N) → [⟨𝑥, 𝑦⟩] ~Q0 = [⟨𝑥, 𝑦⟩] ~Q )
98oveq1d 5857 . . . . . . . . 9 ((𝑥N𝑦N) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
109adantr 274 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
11 pinn 7250 . . . . . . . . 9 (𝑥N𝑥 ∈ ω)
12 addnnnq0 7390 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
1311, 12sylanl1 400 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
1410, 13eqtr3d 2200 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
1514ad2ant2r 501 . . . . . 6 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → ([⟨𝑥, 𝑦⟩] ~Q +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
167, 15eqtrd 2198 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
17 pinn 7250 . . . . . . . . . . . . . 14 (𝑦N𝑦 ∈ ω)
18 nnmcl 6449 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈ ω)
1917, 18sylan 281 . . . . . . . . . . . . 13 ((𝑦N𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈ ω)
2019ad2ant2lr 502 . . . . . . . . . . . 12 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·o 𝑧) ∈ ω)
21 mulpiord 7258 . . . . . . . . . . . . . 14 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) = (𝑥 ·o 𝑤))
22 mulclpi 7269 . . . . . . . . . . . . . 14 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
2321, 22eqeltrrd 2244 . . . . . . . . . . . . 13 ((𝑥N𝑤N) → (𝑥 ·o 𝑤) ∈ N)
2423ad2ant2rl 503 . . . . . . . . . . . 12 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑥 ·o 𝑤) ∈ N)
25 pinn 7250 . . . . . . . . . . . . 13 ((𝑥 ·o 𝑤) ∈ N → (𝑥 ·o 𝑤) ∈ ω)
26 nnacom 6452 . . . . . . . . . . . . 13 (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ ω) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)))
2725, 26sylan2 284 . . . . . . . . . . . 12 (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ N) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)))
2820, 24, 27syl2anc 409 . . . . . . . . . . 11 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) = ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)))
29 nnppipi 7284 . . . . . . . . . . . 12 (((𝑦 ·o 𝑧) ∈ ω ∧ (𝑥 ·o 𝑤) ∈ N) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) ∈ N)
3020, 24, 29syl2anc 409 . . . . . . . . . . 11 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑦 ·o 𝑧) +o (𝑥 ·o 𝑤)) ∈ N)
3128, 30eqeltrrd 2244 . . . . . . . . . 10 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N)
32 mulpiord 7258 . . . . . . . . . . . 12 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤))
33 mulclpi 7269 . . . . . . . . . . . 12 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
3432, 33eqeltrrd 2244 . . . . . . . . . . 11 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) ∈ N)
3534ad2ant2l 500 . . . . . . . . . 10 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·o 𝑤) ∈ N)
36 opelxpi 4636 . . . . . . . . . 10 ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧ (𝑦 ·o 𝑤) ∈ N) → ⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩ ∈ (N × N))
3731, 35, 36syl2anc 409 . . . . . . . . 9 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩ ∈ (N × N))
38 enqex 7301 . . . . . . . . . 10 ~Q ∈ V
3938ecelqsi 6555 . . . . . . . . 9 (⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩ ∈ (N × N) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
4037, 39syl 14 . . . . . . . 8 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
41 df-nqqs 7289 . . . . . . . 8 Q = ((N × N) / ~Q )
4240, 41eleqtrrdi 2260 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~QQ)
43 nqnq0pi 7379 . . . . . . . . 9 ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧ (𝑦 ·o 𝑤) ∈ N) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q )
4443eleq1d 2235 . . . . . . . 8 ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ N ∧ (𝑦 ·o 𝑤) ∈ N) → ([⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0Q ↔ [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~QQ))
4531, 35, 44syl2anc 409 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0Q ↔ [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~QQ))
4642, 45mpbird 166 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0Q)
4746ad2ant2r 501 . . . . 5 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0Q)
4816, 47eqeltrd 2243 . . . 4 ((((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
4948exlimivv 1884 . . 3 (∃𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
5049exlimivv 1884 . 2 (∃𝑥𝑦𝑧𝑤(((𝑥N𝑦N) ∧ 𝐴 = [⟨𝑥, 𝑦⟩] ~Q ) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐵 = [⟨𝑧, 𝑤⟩] ~Q0 )) → (𝐴 +Q0 𝐵) ∈ Q)
515, 50syl 14 1 ((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  cop 3579  ωcom 4567   × cxp 4602  (class class class)co 5842   +o coa 6381   ·o comu 6382  [cec 6499   / cqs 6500  Ncnpi 7213   ·N cmi 7215   ~Q ceq 7220  Qcnq 7221   ~Q0 ceq0 7227  Q0cnq0 7228   +Q0 cplq0 7230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-enq 7288  df-nqqs 7289  df-enq0 7365  df-nq0 7366  df-plq0 7368
This theorem is referenced by:  prarloclemcalc  7443
  Copyright terms: Public domain W3C validator