ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressabsg GIF version

Theorem ressabsg 12879
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
ressabsg ((𝐴𝑋𝐵𝐴𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))

Proof of Theorem ressabsg
StepHypRef Expression
1 simp1 999 . . . 4 ((𝐴𝑋𝐵𝐴𝑊𝑌) → 𝐴𝑋)
2 simp2 1000 . . . 4 ((𝐴𝑋𝐵𝐴𝑊𝑌) → 𝐵𝐴)
31, 2ssexd 4183 . . 3 ((𝐴𝑋𝐵𝐴𝑊𝑌) → 𝐵 ∈ V)
4 ressressg 12878 . . 3 ((𝐴𝑋𝐵 ∈ V ∧ 𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
53, 4syld3an2 1296 . 2 ((𝐴𝑋𝐵𝐴𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
6 sseqin2 3391 . . . 4 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
72, 6sylib 122 . . 3 ((𝐴𝑋𝐵𝐴𝑊𝑌) → (𝐴𝐵) = 𝐵)
87oveq2d 5959 . 2 ((𝐴𝑋𝐵𝐴𝑊𝑌) → (𝑊s (𝐴𝐵)) = (𝑊s 𝐵))
95, 8eqtrd 2237 1 ((𝐴𝑋𝐵𝐴𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1372  wcel 2175  Vcvv 2771  cin 3164  wss 3165  (class class class)co 5943  s cress 12804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811
This theorem is referenced by:  subsubm  13286  subsubg  13504  subsubrng  13947  subsubrg  13978  lsslss  14114
  Copyright terms: Public domain W3C validator