![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressabsg | GIF version |
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ressabsg | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → 𝐴 ∈ 𝑋) | |
2 | simp2 1000 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → 𝐵 ⊆ 𝐴) | |
3 | 1, 2 | ssexd 4169 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → 𝐵 ∈ V) |
4 | ressressg 12693 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | |
5 | 3, 4 | syld3an2 1296 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
6 | sseqin2 3378 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
7 | 2, 6 | sylib 122 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → (𝐴 ∩ 𝐵) = 𝐵) |
8 | 7 | oveq2d 5934 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 ↾s 𝐵)) |
9 | 5, 8 | eqtrd 2226 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3152 ⊆ wss 3153 (class class class)co 5918 ↾s cress 12619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-inn 8983 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 |
This theorem is referenced by: subsubm 13055 subsubg 13267 subsubrng 13710 subsubrg 13741 lsslss 13877 |
Copyright terms: Public domain | W3C validator |