ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressabsg GIF version

Theorem ressabsg 12697
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
ressabsg ((𝐴𝑋𝐵𝐴𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))

Proof of Theorem ressabsg
StepHypRef Expression
1 simp1 999 . . . 4 ((𝐴𝑋𝐵𝐴𝑊𝑌) → 𝐴𝑋)
2 simp2 1000 . . . 4 ((𝐴𝑋𝐵𝐴𝑊𝑌) → 𝐵𝐴)
31, 2ssexd 4170 . . 3 ((𝐴𝑋𝐵𝐴𝑊𝑌) → 𝐵 ∈ V)
4 ressressg 12696 . . 3 ((𝐴𝑋𝐵 ∈ V ∧ 𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
53, 4syld3an2 1296 . 2 ((𝐴𝑋𝐵𝐴𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
6 sseqin2 3379 . . . 4 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
72, 6sylib 122 . . 3 ((𝐴𝑋𝐵𝐴𝑊𝑌) → (𝐴𝐵) = 𝐵)
87oveq2d 5935 . 2 ((𝐴𝑋𝐵𝐴𝑊𝑌) → (𝑊s (𝐴𝐵)) = (𝑊s 𝐵))
95, 8eqtrd 2226 1 ((𝐴𝑋𝐵𝐴𝑊𝑌) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  cin 3153  wss 3154  (class class class)co 5919  s cress 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629
This theorem is referenced by:  subsubm  13058  subsubg  13270  subsubrng  13713  subsubrg  13744  lsslss  13880
  Copyright terms: Public domain W3C validator