![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressabsg | GIF version |
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ressabsg | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → 𝐴 ∈ 𝑋) | |
2 | simp2 998 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → 𝐵 ⊆ 𝐴) | |
3 | 1, 2 | ssexd 4145 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → 𝐵 ∈ V) |
4 | ressressg 12536 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | |
5 | 3, 4 | syld3an2 1285 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
6 | sseqin2 3356 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
7 | 2, 6 | sylib 122 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → (𝐴 ∩ 𝐵) = 𝐵) |
8 | 7 | oveq2d 5893 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 ↾s 𝐵)) |
9 | 5, 8 | eqtrd 2210 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 ⊆ wss 3131 (class class class)co 5877 ↾s cress 12465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-inn 8922 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-iress 12472 |
This theorem is referenced by: subsubg 13062 subsubrg 13371 lsslss 13473 |
Copyright terms: Public domain | W3C validator |