Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpdivcxp GIF version

Theorem rpdivcxp 13076
 Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.)
Assertion
Ref Expression
rpdivcxp ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))

Proof of Theorem rpdivcxp
StepHypRef Expression
1 simp2 983 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐵 ∈ ℝ+)
21rpreccld 9553 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (1 / 𝐵) ∈ ℝ+)
3 rpmulcxp 13074 . . . 4 ((𝐴 ∈ ℝ+ ∧ (1 / 𝐵) ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · (1 / 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) · ((1 / 𝐵)↑𝑐𝐶)))
42, 3syld3an2 1264 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · (1 / 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) · ((1 / 𝐵)↑𝑐𝐶)))
5 cxprec 13075 . . . . 5 ((𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((1 / 𝐵)↑𝑐𝐶) = (1 / (𝐵𝑐𝐶)))
653adant1 1000 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((1 / 𝐵)↑𝑐𝐶) = (1 / (𝐵𝑐𝐶)))
76oveq2d 5802 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴𝑐𝐶) · ((1 / 𝐵)↑𝑐𝐶)) = ((𝐴𝑐𝐶) · (1 / (𝐵𝑐𝐶))))
84, 7eqtrd 2174 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · (1 / 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) · (1 / (𝐵𝑐𝐶))))
9 simp1 982 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐴 ∈ ℝ+)
109rpcnd 9544 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
111rpcnd 9544 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
121rpap0d 9548 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → 𝐵 # 0)
1310, 11, 12divrecapd 8606 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
1413oveq1d 5801 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴 · (1 / 𝐵))↑𝑐𝐶))
15 rpcncxpcl 13067 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴𝑐𝐶) ∈ ℂ)
16153adant2 1001 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐴𝑐𝐶) ∈ ℂ)
17 rpcncxpcl 13067 . . . 4 ((𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ∈ ℂ)
18173adant1 1000 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ∈ ℂ)
19 cxpap0 13069 . . . 4 ((𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) # 0)
20193adant1 1000 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → (𝐵𝑐𝐶) # 0)
2116, 18, 20divrecapd 8606 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)) = ((𝐴𝑐𝐶) · (1 / (𝐵𝑐𝐶))))
228, 14, 213eqtr4d 2184 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   class class class wbr 3939  (class class class)co 5786  ℂcc 7671  0cc0 7673  1c1 7674   · cmul 7678   # cap 8396   / cdiv 8485  ℝ+crp 9499  ↑𝑐ccxp 13022 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2123  ax-coll 4053  ax-sep 4056  ax-nul 4064  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-iinf 4513  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-mulrcl 7772  ax-addcom 7773  ax-mulcom 7774  ax-addass 7775  ax-mulass 7776  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-1rid 7780  ax-0id 7781  ax-rnegex 7782  ax-precex 7783  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-apti 7788  ax-pre-ltadd 7789  ax-pre-mulgt0 7790  ax-pre-mulext 7791  ax-arch 7792  ax-caucvg 7793  ax-pre-suploc 7794  ax-addf 7795  ax-mulf 7796 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1738  df-eu 2004  df-mo 2005  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rmo 2426  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-nul 3371  df-if 3482  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-iun 3825  df-disj 3917  df-br 3940  df-opab 4000  df-mpt 4001  df-tr 4037  df-id 4226  df-po 4229  df-iso 4230  df-iord 4299  df-on 4301  df-ilim 4302  df-suc 4304  df-iom 4516  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-f1 5140  df-fo 5141  df-f1o 5142  df-fv 5143  df-isom 5144  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-of 5994  df-1st 6050  df-2nd 6051  df-recs 6214  df-irdg 6279  df-frec 6300  df-1o 6325  df-oadd 6329  df-er 6441  df-map 6556  df-pm 6557  df-en 6647  df-dom 6648  df-fin 6649  df-sup 6888  df-inf 6889  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-reap 8390  df-ap 8397  df-div 8486  df-inn 8774  df-2 8832  df-3 8833  df-4 8834  df-n0 9031  df-z 9108  df-uz 9380  df-q 9468  df-rp 9500  df-xneg 9618  df-xadd 9619  df-ioo 9734  df-ico 9736  df-icc 9737  df-fz 9851  df-fzo 9980  df-seqfrec 10279  df-exp 10353  df-fac 10533  df-bc 10555  df-ihash 10583  df-shft 10648  df-cj 10675  df-re 10676  df-im 10677  df-rsqrt 10831  df-abs 10832  df-clim 11109  df-sumdc 11184  df-ef 11427  df-e 11428  df-rest 12197  df-topgen 12216  df-psmet 12231  df-xmet 12232  df-met 12233  df-bl 12234  df-mopn 12235  df-top 12240  df-topon 12253  df-bases 12285  df-ntr 12340  df-cn 12432  df-cnp 12433  df-tx 12497  df-cncf 12802  df-limced 12869  df-dvap 12870  df-relog 13023  df-rpcxp 13024 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator