![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltdivmul | GIF version |
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.) |
Ref | Expression |
---|---|
ltdivmul | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐶 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remulcl 8002 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | |
2 | 1 | ancoms 268 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) |
3 | 2 | adantrr 479 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ) |
4 | 3 | 3adant1 1017 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐶 · 𝐵) ∈ ℝ) |
5 | ltdiv1 8889 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐵) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶))) | |
6 | 4, 5 | syld3an2 1296 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < (𝐶 · 𝐵) ↔ (𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶))) |
7 | recn 8007 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
8 | 7 | adantr 276 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ) |
9 | recn 8007 | . . . . . 6 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
10 | 9 | ad2antrl 490 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ) |
11 | gt0ap0 8647 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 # 0) | |
12 | 11 | adantl 277 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 # 0) |
13 | 8, 10, 12 | divcanap3d 8816 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
14 | 13 | 3adant1 1017 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
15 | 14 | breq2d 4042 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < ((𝐶 · 𝐵) / 𝐶) ↔ (𝐴 / 𝐶) < 𝐵)) |
16 | 6, 15 | bitr2d 189 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵 ↔ 𝐴 < (𝐶 · 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 · cmul 7879 < clt 8056 # cap 8602 / cdiv 8693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 |
This theorem is referenced by: ltdivmul2 8899 lt2mul2div 8900 ltrec 8904 avglt2 9225 3halfnz 9417 ltdivmuld 9817 modqid 10423 expnbnd 10737 mertenslemi1 11681 eirraplem 11923 fldivp1 12489 pcfaclem 12490 4sqlem12 12543 dveflem 14905 coseq0negpitopi 15012 tangtx 15014 cosordlem 15025 cos02pilt1 15027 gausslemma2dlem0c 15208 lgsquadlem1 15234 2sqlem8 15280 ex-fl 15287 |
Copyright terms: Public domain | W3C validator |