| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnncan2 | GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.) |
| Ref | Expression |
|---|---|
| nnncan2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 8301 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) | |
| 2 | 1 | 3adant1 1018 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) |
| 3 | sub32 8336 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 − 𝐶) ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = ((𝐴 − 𝐶) − (𝐵 − 𝐶))) | |
| 4 | 2, 3 | syld3an2 1297 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = ((𝐴 − 𝐶) − (𝐵 − 𝐶))) |
| 5 | nnncan 8337 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) | |
| 6 | 4, 5 | eqtr3d 2241 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 (class class class)co 5962 ℂcc 7953 − cmin 8273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-setind 4598 ax-resscn 8047 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-sub 8275 |
| This theorem is referenced by: nnncan2d 8448 fzmmmeqm 10210 |
| Copyright terms: Public domain | W3C validator |