ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syld3an2 Unicode version

Theorem syld3an2 1297
Description: A syllogism inference. (Contributed by NM, 20-May-2007.)
Hypotheses
Ref Expression
syld3an2.1  |-  ( (
ph  /\  ch  /\  th )  ->  ps )
syld3an2.2  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
Assertion
Ref Expression
syld3an2  |-  ( (
ph  /\  ch  /\  th )  ->  ta )

Proof of Theorem syld3an2
StepHypRef Expression
1 syld3an2.1 . . . 4  |-  ( (
ph  /\  ch  /\  th )  ->  ps )
213com23 1212 . . 3  |-  ( (
ph  /\  th  /\  ch )  ->  ps )
3 syld3an2.2 . . . 4  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
433com23 1212 . . 3  |-  ( (
ph  /\  th  /\  ps )  ->  ta )
52, 4syld3an3 1295 . 2  |-  ( (
ph  /\  th  /\  ch )  ->  ta )
653com23 1212 1  |-  ( (
ph  /\  ch  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  nppcan2  8338  nnncan  8342  nnncan2  8344  ltdivmul  8984  ledivmul  8985  ltdiv23  9000  lediv23  9001  pfxtrcfv  11184  dvdssub2  12261  dvdsgcdb  12449  lcmdvdsb  12521  ressabsg  13023  mulginvcom  13598  lspssp  14280  rpdivcxp  15498
  Copyright terms: Public domain W3C validator