ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syld3an2 Unicode version

Theorem syld3an2 1318
Description: A syllogism inference. (Contributed by NM, 20-May-2007.)
Hypotheses
Ref Expression
syld3an2.1  |-  ( (
ph  /\  ch  /\  th )  ->  ps )
syld3an2.2  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
Assertion
Ref Expression
syld3an2  |-  ( (
ph  /\  ch  /\  th )  ->  ta )

Proof of Theorem syld3an2
StepHypRef Expression
1 syld3an2.1 . . . 4  |-  ( (
ph  /\  ch  /\  th )  ->  ps )
213com23 1233 . . 3  |-  ( (
ph  /\  th  /\  ch )  ->  ps )
3 syld3an2.2 . . . 4  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
433com23 1233 . . 3  |-  ( (
ph  /\  th  /\  ps )  ->  ta )
52, 4syld3an3 1316 . 2  |-  ( (
ph  /\  th  /\  ch )  ->  ta )
653com23 1233 1  |-  ( (
ph  /\  ch  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  nppcan2  8377  nnncan  8381  nnncan2  8383  ltdivmul  9023  ledivmul  9024  ltdiv23  9039  lediv23  9040  pfxtrcfv  11225  dvdssub2  12346  dvdsgcdb  12534  lcmdvdsb  12606  ressabsg  13109  mulginvcom  13684  lspssp  14367  rpdivcxp  15585
  Copyright terms: Public domain W3C validator