Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syld3an2 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an2.1 | |
syld3an2.2 |
Ref | Expression |
---|---|
syld3an2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an2.1 | . . . 4 | |
2 | 1 | 3com23 1204 | . . 3 |
3 | syld3an2.2 | . . . 4 | |
4 | 3 | 3com23 1204 | . . 3 |
5 | 2, 4 | syld3an3 1278 | . 2 |
6 | 5 | 3com23 1204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: nppcan2 8137 nnncan 8141 nnncan2 8143 ltdivmul 8779 ledivmul 8780 ltdiv23 8795 lediv23 8796 dvdssub2 11784 dvdsgcdb 11955 lcmdvdsb 12025 rpdivcxp 13547 |
Copyright terms: Public domain | W3C validator |