ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syld3an2 Unicode version

Theorem syld3an2 1297
Description: A syllogism inference. (Contributed by NM, 20-May-2007.)
Hypotheses
Ref Expression
syld3an2.1  |-  ( (
ph  /\  ch  /\  th )  ->  ps )
syld3an2.2  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
Assertion
Ref Expression
syld3an2  |-  ( (
ph  /\  ch  /\  th )  ->  ta )

Proof of Theorem syld3an2
StepHypRef Expression
1 syld3an2.1 . . . 4  |-  ( (
ph  /\  ch  /\  th )  ->  ps )
213com23 1212 . . 3  |-  ( (
ph  /\  th  /\  ch )  ->  ps )
3 syld3an2.2 . . . 4  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
433com23 1212 . . 3  |-  ( (
ph  /\  th  /\  ps )  ->  ta )
52, 4syld3an3 1295 . 2  |-  ( (
ph  /\  th  /\  ch )  ->  ta )
653com23 1212 1  |-  ( (
ph  /\  ch  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  nppcan2  8305  nnncan  8309  nnncan2  8311  ltdivmul  8951  ledivmul  8952  ltdiv23  8967  lediv23  8968  pfxtrcfv  11147  dvdssub2  12179  dvdsgcdb  12367  lcmdvdsb  12439  ressabsg  12941  mulginvcom  13516  lspssp  14198  rpdivcxp  15416
  Copyright terms: Public domain W3C validator