| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑥 = 0 → (𝑥 · (𝐼‘𝑋)) = (0 · (𝐼‘𝑋))) | 
| 2 |   | fvoveq1 5945 | 
. . . . . 6
⊢ (𝑥 = 0 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(0 · 𝑋))) | 
| 3 | 1, 2 | eqeq12d 2211 | 
. . . . 5
⊢ (𝑥 = 0 → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (0 · (𝐼‘𝑋)) = (𝐼‘(0 · 𝑋)))) | 
| 4 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 · (𝐼‘𝑋)) = (𝑦 · (𝐼‘𝑋))) | 
| 5 |   | fvoveq1 5945 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑦 · 𝑋))) | 
| 6 | 4, 5 | eqeq12d 2211 | 
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)))) | 
| 7 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝐼‘𝑋)) = ((𝑦 + 1) · (𝐼‘𝑋))) | 
| 8 |   | fvoveq1 5945 | 
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))) | 
| 9 | 7, 8 | eqeq12d 2211 | 
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))) | 
| 10 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑥 = -𝑦 → (𝑥 · (𝐼‘𝑋)) = (-𝑦 · (𝐼‘𝑋))) | 
| 11 |   | fvoveq1 5945 | 
. . . . . 6
⊢ (𝑥 = -𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(-𝑦 · 𝑋))) | 
| 12 | 10, 11 | eqeq12d 2211 | 
. . . . 5
⊢ (𝑥 = -𝑦 → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋)))) | 
| 13 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 · (𝐼‘𝑋)) = (𝑁 · (𝐼‘𝑋))) | 
| 14 |   | fvoveq1 5945 | 
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑁 · 𝑋))) | 
| 15 | 13, 14 | eqeq12d 2211 | 
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 · (𝐼‘𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋)))) | 
| 16 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 17 |   | mulginvcom.i | 
. . . . . . . . 9
⊢ 𝐼 = (invg‘𝐺) | 
| 18 | 16, 17 | grpinvid 13192 | 
. . . . . . . 8
⊢ (𝐺 ∈ Grp → (𝐼‘(0g‘𝐺)) = (0g‘𝐺)) | 
| 19 | 18 | eqcomd 2202 | 
. . . . . . 7
⊢ (𝐺 ∈ Grp →
(0g‘𝐺) =
(𝐼‘(0g‘𝐺))) | 
| 20 | 19 | adantr 276 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = (𝐼‘(0g‘𝐺))) | 
| 21 |   | mulginvcom.b | 
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) | 
| 22 | 21, 17 | grpinvcl 13180 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) | 
| 23 |   | mulginvcom.t | 
. . . . . . . 8
⊢  · =
(.g‘𝐺) | 
| 24 | 21, 16, 23 | mulg0 13255 | 
. . . . . . 7
⊢ ((𝐼‘𝑋) ∈ 𝐵 → (0 · (𝐼‘𝑋)) = (0g‘𝐺)) | 
| 25 | 22, 24 | syl 14 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · (𝐼‘𝑋)) = (0g‘𝐺)) | 
| 26 | 21, 16, 23 | mulg0 13255 | 
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) | 
| 27 | 26 | adantl 277 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝐺)) | 
| 28 | 27 | fveq2d 5562 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘(0 · 𝑋)) = (𝐼‘(0g‘𝐺))) | 
| 29 | 20, 25, 28 | 3eqtr4d 2239 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · (𝐼‘𝑋)) = (𝐼‘(0 · 𝑋))) | 
| 30 |   | oveq2 5930 | 
. . . . . . . . . 10
⊢ ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋))) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) | 
| 31 | 30 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋))) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) | 
| 32 |   | grpmnd 13139 | 
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | 
| 33 | 32 | 3ad2ant1 1020 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Mnd) | 
| 34 |   | simp2 1000 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → 𝑦 ∈ ℕ0) | 
| 35 | 22 | 3adant2 1018 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) | 
| 36 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 37 | 21, 23, 36 | mulgnn0p1 13263 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ (𝐼‘𝑋) ∈ 𝐵) → ((𝑦 + 1) · (𝐼‘𝑋)) = ((𝑦 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋))) | 
| 38 | 33, 34, 35, 37 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · (𝐼‘𝑋)) = ((𝑦 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋))) | 
| 39 |   | simp1 999 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) | 
| 40 |   | nn0z 9346 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) | 
| 41 | 40 | 3ad2ant2 1021 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → 𝑦 ∈ ℤ) | 
| 42 | 21, 23, 36 | mulgaddcom 13276 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼‘𝑋) ∈ 𝐵) → ((𝑦 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋)))) | 
| 43 | 39, 41, 35, 42 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋)))) | 
| 44 | 38, 43 | eqtrd 2229 | 
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · (𝐼‘𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋)))) | 
| 45 | 44 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼‘𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝑦 · (𝐼‘𝑋)))) | 
| 46 | 21, 23, 36 | mulgnn0p1 13263 | 
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝐺)𝑋)) | 
| 47 | 32, 46 | syl3an1 1282 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝐺)𝑋)) | 
| 48 | 47 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = (𝐼‘((𝑦 · 𝑋)(+g‘𝐺)𝑋))) | 
| 49 | 21, 23 | mulgcl 13269 | 
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) | 
| 50 | 40, 49 | syl3an2 1283 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) | 
| 51 | 21, 36, 17 | grpinvadd 13210 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐼‘((𝑦 · 𝑋)(+g‘𝐺)𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) | 
| 52 | 50, 51 | syld3an2 1296 | 
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝐼‘((𝑦 · 𝑋)(+g‘𝐺)𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) | 
| 53 | 48, 52 | eqtrd 2229 | 
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) | 
| 54 | 53 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼‘𝑋)(+g‘𝐺)(𝐼‘(𝑦 · 𝑋)))) | 
| 55 | 31, 45, 54 | 3eqtr4d 2239 | 
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))) | 
| 56 | 55 | 3exp1 1225 | 
. . . . . . 7
⊢ (𝐺 ∈ Grp → (𝑦 ∈ ℕ0
→ (𝑋 ∈ 𝐵 → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))) | 
| 57 | 56 | com23 78 | 
. . . . . 6
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))) | 
| 58 | 57 | imp 124 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼‘𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))) | 
| 59 |   | nnz 9345 | 
. . . . . 6
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) | 
| 60 | 22 | 3adant2 1018 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) | 
| 61 | 21, 23, 17 | mulgneg 13270 | 
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼‘𝑋) ∈ 𝐵) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · (𝐼‘𝑋)))) | 
| 62 | 60, 61 | syld3an3 1294 | 
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · (𝐼‘𝑋)))) | 
| 63 | 62 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · (𝐼‘𝑋)))) | 
| 64 | 21, 23, 17 | mulgneg 13270 | 
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋))) | 
| 65 | 64 | adantr 276 | 
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋))) | 
| 66 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) | 
| 67 | 65, 66 | eqtr4d 2232 | 
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝑦 · (𝐼‘𝑋))) | 
| 68 | 67 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘(-𝑦 · 𝑋)) = (𝐼‘(𝑦 · (𝐼‘𝑋)))) | 
| 69 | 63, 68 | eqtr4d 2232 | 
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋))) | 
| 70 | 69 | 3exp1 1225 | 
. . . . . . . 8
⊢ (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋 ∈ 𝐵 → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))) | 
| 71 | 70 | com23 78 | 
. . . . . . 7
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑦 ∈ ℤ → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))) | 
| 72 | 71 | imp 124 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ ℤ → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋))))) | 
| 73 | 59, 72 | syl5 32 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ ℕ → ((𝑦 · (𝐼‘𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼‘𝑋)) = (𝐼‘(-𝑦 · 𝑋))))) | 
| 74 | 3, 6, 9, 12, 15, 29, 58, 73 | zindd 9444 | 
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁 ∈ ℤ → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋)))) | 
| 75 | 74 | ex 115 | 
. . 3
⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → (𝑁 ∈ ℤ → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))))) | 
| 76 | 75 | com23 78 | 
. 2
⊢ (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋 ∈ 𝐵 → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))))) | 
| 77 | 76 | 3imp 1195 | 
1
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))) |