ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulginvcom GIF version

Theorem mulginvcom 12883
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulginvcom.b 𝐵 = (Base‘𝐺)
mulginvcom.t · = (.g𝐺)
mulginvcom.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulginvcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulginvcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5875 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
2 fvoveq1 5891 . . . . . 6 (𝑥 = 0 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(0 · 𝑋)))
31, 2eqeq12d 2192 . . . . 5 (𝑥 = 0 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋))))
4 oveq1 5875 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝐼𝑋)) = (𝑦 · (𝐼𝑋)))
5 fvoveq1 5891 . . . . . 6 (𝑥 = 𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑦 · 𝑋)))
64, 5eqeq12d 2192 . . . . 5 (𝑥 = 𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))))
7 oveq1 5875 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑦 + 1) · (𝐼𝑋)))
8 fvoveq1 5891 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
97, 8eqeq12d 2192 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))
10 oveq1 5875 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝐼𝑋)) = (-𝑦 · (𝐼𝑋)))
11 fvoveq1 5891 . . . . . 6 (𝑥 = -𝑦 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
1210, 11eqeq12d 2192 . . . . 5 (𝑥 = -𝑦 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))
13 oveq1 5875 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
14 fvoveq1 5891 . . . . . 6 (𝑥 = 𝑁 → (𝐼‘(𝑥 · 𝑋)) = (𝐼‘(𝑁 · 𝑋)))
1513, 14eqeq12d 2192 . . . . 5 (𝑥 = 𝑁 → ((𝑥 · (𝐼𝑋)) = (𝐼‘(𝑥 · 𝑋)) ↔ (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
16 eqid 2177 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
17 mulginvcom.i . . . . . . . . 9 𝐼 = (invg𝐺)
1816, 17grpinvid 12807 . . . . . . . 8 (𝐺 ∈ Grp → (𝐼‘(0g𝐺)) = (0g𝐺))
1918eqcomd 2183 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) = (𝐼‘(0g𝐺)))
2019adantr 276 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0g𝐺) = (𝐼‘(0g𝐺)))
21 mulginvcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2221, 17grpinvcl 12798 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
23 mulginvcom.t . . . . . . . 8 · = (.g𝐺)
2421, 16, 23mulg0 12864 . . . . . . 7 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
2522, 24syl 14 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
2621, 16, 23mulg0 12864 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 277 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827fveq2d 5514 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼‘(0 · 𝑋)) = (𝐼‘(0g𝐺)))
2920, 25, 283eqtr4d 2220 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (𝐼‘(0 · 𝑋)))
30 oveq2 5876 . . . . . . . . . 10 ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
3130adantl 277 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
32 grpmnd 12761 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
33323ad2ant1 1018 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Mnd)
34 simp2 998 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℕ0)
35223adant2 1016 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
36 eqid 2177 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
3721, 23, 36mulgnn0p1 12870 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
3833, 34, 35, 37syl3anc 1238 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
39 simp1 997 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝐺 ∈ Grp)
40 nn0z 9249 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
41403ad2ant2 1019 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → 𝑦 ∈ ℤ)
4221, 23, 36mulgaddcom 12882 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4339, 41, 35, 42syl3anc 1238 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4438, 43eqtrd 2210 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4544adantr 276 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = ((𝐼𝑋)(+g𝐺)(𝑦 · (𝐼𝑋))))
4621, 23, 36mulgnn0p1 12870 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4732, 46syl3an1 1271 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝐺)𝑋))
4847fveq2d 5514 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)))
4921, 23mulgcl 12876 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5040, 49syl3an2 1272 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5121, 36, 17grpinvadd 12824 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5250, 51syld3an2 1285 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 · 𝑋)(+g𝐺)𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5348, 52eqtrd 2210 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5453adantr 276 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘((𝑦 + 1) · 𝑋)) = ((𝐼𝑋)(+g𝐺)(𝐼‘(𝑦 · 𝑋))))
5531, 45, 543eqtr4d 2220 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℕ0𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))
56553exp1 1223 . . . . . . 7 (𝐺 ∈ Grp → (𝑦 ∈ ℕ0 → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5756com23 78 . . . . . 6 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋))))))
5857imp 124 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → ((𝑦 + 1) · (𝐼𝑋)) = (𝐼‘((𝑦 + 1) · 𝑋)))))
59 nnz 9248 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
60223adant2 1016 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
6121, 23, 17mulgneg 12877 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6260, 61syld3an3 1283 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6362adantr 276 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6421, 23, 17mulgneg 12877 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
6564adantr 276 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝐼‘(𝑦 · 𝑋)))
66 simpr 110 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)))
6765, 66eqtr4d 2213 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · 𝑋) = (𝑦 · (𝐼𝑋)))
6867fveq2d 5514 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (𝐼‘(-𝑦 · 𝑋)) = (𝐼‘(𝑦 · (𝐼𝑋))))
6963, 68eqtr4d 2213 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋))) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))
70693exp1 1223 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7170com23 78 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋))))))
7271imp 124 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
7359, 72syl5 32 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → ((𝑦 · (𝐼𝑋)) = (𝐼‘(𝑦 · 𝑋)) → (-𝑦 · (𝐼𝑋)) = (𝐼‘(-𝑦 · 𝑋)))))
743, 6, 9, 12, 15, 29, 58, 73zindd 9347 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋))))
7574ex 115 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
7675com23 78 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))))
77763imp 1193 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  cfv 5211  (class class class)co 5868  0cc0 7789  1c1 7790   + caddc 7792  -cneg 8106  cn 8895  0cn0 9152  cz 9229  Basecbs 12432  +gcplusg 12505  0gc0g 12640  Mndcmnd 12696  Grpcgrp 12754  invgcminusg 12755  .gcmg 12859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-addcom 7889  ax-addass 7891  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-0id 7897  ax-rnegex 7898  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-ltadd 7905
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4289  df-iord 4362  df-on 4364  df-ilim 4365  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-recs 6299  df-frec 6385  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-inn 8896  df-2 8954  df-n0 9153  df-z 9230  df-uz 9505  df-seqfrec 10419  df-ndx 12435  df-slot 12436  df-base 12438  df-plusg 12518  df-0g 12642  df-mgm 12654  df-sgrp 12687  df-mnd 12697  df-grp 12757  df-minusg 12758  df-mulg 12860
This theorem is referenced by:  mulginvinv  12884
  Copyright terms: Public domain W3C validator