ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssub2 GIF version

Theorem dvdssub2 11978
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
dvdssub2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))

Proof of Theorem dvdssub2
StepHypRef Expression
1 zsubcl 9358 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
213adant1 1017 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
3 dvds2sub 11969 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → ((𝐾𝑀𝐾 ∥ (𝑀𝑁)) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
42, 3syld3an3 1294 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾 ∥ (𝑀𝑁)) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
54ancomsd 269 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
65imp 124 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → 𝐾 ∥ (𝑀 − (𝑀𝑁)))
7 zcn 9322 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 zcn 9322 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
9 nncan 8248 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 − (𝑀𝑁)) = 𝑁)
107, 8, 9syl2an 289 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀𝑁)) = 𝑁)
11103adant1 1017 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀𝑁)) = 𝑁)
1211adantr 276 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → (𝑀 − (𝑀𝑁)) = 𝑁)
136, 12breqtrd 4055 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → 𝐾𝑁)
1413expr 375 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))
15 dvds2add 11968 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁) → 𝐾 ∥ ((𝑀𝑁) + 𝑁)))
162, 15syld3an2 1296 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁) → 𝐾 ∥ ((𝑀𝑁) + 𝑁)))
1716imp 124 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → 𝐾 ∥ ((𝑀𝑁) + 𝑁))
18 npcan 8228 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) + 𝑁) = 𝑀)
197, 8, 18syl2an 289 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
20193adant1 1017 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
2120adantr 276 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → ((𝑀𝑁) + 𝑁) = 𝑀)
2217, 21breqtrd 4055 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → 𝐾𝑀)
2322expr 375 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑁𝐾𝑀))
2414, 23impbid 129 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cc 7870   + caddc 7875  cmin 8190  cz 9317  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-dvds 11931
This theorem is referenced by:  dvdsadd  11979  znunit  14147  2sqlem8  15210
  Copyright terms: Public domain W3C validator