ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdssub2 GIF version

Theorem dvdssub2 11729
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
dvdssub2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))

Proof of Theorem dvdssub2
StepHypRef Expression
1 zsubcl 9208 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
213adant1 1000 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
3 dvds2sub 11722 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ) → ((𝐾𝑀𝐾 ∥ (𝑀𝑁)) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
42, 3syld3an3 1265 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾 ∥ (𝑀𝑁)) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
54ancomsd 267 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀) → 𝐾 ∥ (𝑀 − (𝑀𝑁))))
65imp 123 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → 𝐾 ∥ (𝑀 − (𝑀𝑁)))
7 zcn 9172 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 zcn 9172 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
9 nncan 8104 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 − (𝑀𝑁)) = 𝑁)
107, 8, 9syl2an 287 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀𝑁)) = 𝑁)
11103adant1 1000 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀𝑁)) = 𝑁)
1211adantr 274 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → (𝑀 − (𝑀𝑁)) = 𝑁)
136, 12breqtrd 3990 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑀)) → 𝐾𝑁)
1413expr 373 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))
15 dvds2add 11721 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁) → 𝐾 ∥ ((𝑀𝑁) + 𝑁)))
162, 15syld3an2 1267 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁) → 𝐾 ∥ ((𝑀𝑁) + 𝑁)))
1716imp 123 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → 𝐾 ∥ ((𝑀𝑁) + 𝑁))
18 npcan 8084 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) + 𝑁) = 𝑀)
197, 8, 18syl2an 287 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
20193adant1 1000 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) + 𝑁) = 𝑀)
2120adantr 274 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → ((𝑀𝑁) + 𝑁) = 𝑀)
2217, 21breqtrd 3990 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀𝑁) ∧ 𝐾𝑁)) → 𝐾𝑀)
2322expr 373 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑁𝐾𝑀))
2414, 23impbid 128 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128   class class class wbr 3965  (class class class)co 5824  cc 7730   + caddc 7735  cmin 8046  cz 9167  cdvds 11683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-iota 5135  df-fun 5172  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-inn 8834  df-n0 9091  df-z 9168  df-dvds 11684
This theorem is referenced by:  dvdsadd  11730
  Copyright terms: Public domain W3C validator