| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdssub2 | GIF version | ||
| Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
| Ref | Expression |
|---|---|
| dvdssub2 | ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl 9487 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
| 2 | 1 | 3adant1 1039 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
| 3 | dvds2sub 12337 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ (𝑀 − 𝑁)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) | |
| 4 | 2, 3 | syld3an3 1316 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ (𝑀 − 𝑁)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) |
| 5 | 4 | ancomsd 269 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) |
| 6 | 5 | imp 124 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁))) |
| 7 | zcn 9451 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 8 | zcn 9451 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 9 | nncan 8375 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) | |
| 10 | 7, 8, 9 | syl2an 289 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
| 11 | 10 | 3adant1 1039 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
| 12 | 11 | adantr 276 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
| 13 | 6, 12 | breqtrd 4109 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → 𝐾 ∥ 𝑁) |
| 14 | 13 | expr 375 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 → 𝐾 ∥ 𝑁)) |
| 15 | dvds2add 12336 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁))) | |
| 16 | 2, 15 | syld3an2 1318 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁))) |
| 17 | 16 | imp 124 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁)) |
| 18 | npcan 8355 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) | |
| 19 | 7, 8, 18 | syl2an 289 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
| 20 | 19 | 3adant1 1039 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
| 21 | 20 | adantr 276 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
| 22 | 17, 21 | breqtrd 4109 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ 𝑀) |
| 23 | 22 | expr 375 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑁 → 𝐾 ∥ 𝑀)) |
| 24 | 14, 23 | impbid 129 | 1 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6001 ℂcc 7997 + caddc 8002 − cmin 8317 ℤcz 9446 ∥ cdvds 12298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-dvds 12299 |
| This theorem is referenced by: dvdsadd 12347 3dvds 12375 bitsmod 12467 bitsinv1lem 12472 znunit 14623 perfectlem1 15673 2sqlem8 15802 |
| Copyright terms: Public domain | W3C validator |