![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdssub2 | GIF version |
Description: If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
Ref | Expression |
---|---|
dvdssub2 | ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 8996 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
2 | 1 | 3adant1 982 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
3 | dvds2sub 11373 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ (𝑀 − 𝑁)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) | |
4 | 2, 3 | syld3an3 1244 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ (𝑀 − 𝑁)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) |
5 | 4 | ancomsd 267 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁)))) |
6 | 5 | imp 123 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → 𝐾 ∥ (𝑀 − (𝑀 − 𝑁))) |
7 | zcn 8960 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
8 | zcn 8960 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
9 | nncan 7911 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) | |
10 | 7, 8, 9 | syl2an 285 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
11 | 10 | 3adant1 982 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
12 | 11 | adantr 272 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → (𝑀 − (𝑀 − 𝑁)) = 𝑁) |
13 | 6, 12 | breqtrd 3919 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑀)) → 𝐾 ∥ 𝑁) |
14 | 13 | expr 370 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 → 𝐾 ∥ 𝑁)) |
15 | dvds2add 11372 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ (𝑀 − 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁))) | |
16 | 2, 15 | syld3an2 1246 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁))) |
17 | 16 | imp 123 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ ((𝑀 − 𝑁) + 𝑁)) |
18 | npcan 7891 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) | |
19 | 7, 8, 18 | syl2an 285 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
20 | 19 | 3adant1 982 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
21 | 20 | adantr 272 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → ((𝑀 − 𝑁) + 𝑁) = 𝑀) |
22 | 17, 21 | breqtrd 3919 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ (𝑀 − 𝑁) ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ 𝑀) |
23 | 22 | expr 370 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑁 → 𝐾 ∥ 𝑀)) |
24 | 14, 23 | impbid 128 | 1 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 class class class wbr 3895 (class class class)co 5728 ℂcc 7542 + caddc 7547 − cmin 7853 ℤcz 8955 ∥ cdvds 11338 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7633 ax-resscn 7634 ax-1cn 7635 ax-1re 7636 ax-icn 7637 ax-addcl 7638 ax-addrcl 7639 ax-mulcl 7640 ax-addcom 7642 ax-mulcom 7643 ax-addass 7644 ax-distr 7646 ax-i2m1 7647 ax-0lt1 7648 ax-0id 7650 ax-rnegex 7651 ax-cnre 7653 ax-pre-ltirr 7654 ax-pre-ltwlin 7655 ax-pre-lttrn 7656 ax-pre-ltadd 7658 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-pnf 7723 df-mnf 7724 df-xr 7725 df-ltxr 7726 df-le 7727 df-sub 7855 df-neg 7856 df-inn 8628 df-n0 8879 df-z 8956 df-dvds 11339 |
This theorem is referenced by: dvdsadd 11381 |
Copyright terms: Public domain | W3C validator |