Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqriv | GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2159 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1441 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqid 2165 sb8ab 2288 cbvabw 2289 cbvab 2290 vjust 2727 nfccdeq 2949 csbcow 3056 difeqri 3242 uneqri 3264 incom 3314 ineqri 3315 difin 3359 invdif 3364 indif 3365 difundi 3374 indifdir 3378 pwv 3788 uniun 3808 intun 3855 intpr 3856 iuncom 3872 iuncom4 3873 iun0 3922 0iun 3923 iunin2 3929 iunun 3944 iunxun 3945 iunxiun 3947 iinpw 3956 inuni 4134 unidif0 4146 unipw 4195 snnex 4426 unon 4488 xpiundi 4662 xpiundir 4663 0xp 4684 iunxpf 4752 cnvuni 4790 dmiun 4813 dmuni 4814 epini 4975 rniun 5014 cnvresima 5093 imaco 5109 rnco 5110 dfmpt3 5310 imaiun 5728 opabex3d 6089 opabex3 6090 ecid 6564 qsid 6566 mapval2 6644 ixpin 6689 dfz2 9263 dfrp2 10199 infssuzex 11882 1nprm 12046 infpn2 12389 |
Copyright terms: Public domain | W3C validator |