![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqriv | GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2187 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1464 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eqid 2193 sb8ab 2315 cbvabw 2316 cbvab 2317 vjust 2761 nfccdeq 2984 csbcow 3092 difeqri 3280 uneqri 3302 incom 3352 ineqri 3353 difin 3397 invdif 3402 indif 3403 difundi 3412 indifdir 3416 pwv 3835 uniun 3855 intun 3902 intpr 3903 iuncom 3919 iuncom4 3920 iun0 3970 0iun 3971 iunin2 3977 iunun 3992 iunxun 3993 iunxiun 3995 iinpw 4004 inuni 4185 unidif0 4197 unipw 4247 snnex 4480 unon 4544 xpiundi 4718 xpiundir 4719 0xp 4740 iunxpf 4811 cnvuni 4849 dmiun 4872 dmuni 4873 epini 5037 rniun 5077 cnvresima 5156 imaco 5172 rnco 5173 dfmpt3 5377 imaiun 5804 opabex3d 6175 opabex3 6176 ecid 6654 qsid 6656 mapval2 6734 ixpin 6779 dfz2 9392 dfrp2 10335 infssuzex 12089 1nprm 12255 infpn2 12616 rrgval 13761 2idlval 14001 cnfldui 14088 zrhval 14116 plyun0 14915 |
Copyright terms: Public domain | W3C validator |