| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqriv | GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2223 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1499 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqid 2229 sb8ab 2351 cbvabw 2352 cbvab 2353 vjust 2800 nfccdeq 3026 csbcow 3135 difeqri 3324 uneqri 3346 incom 3396 ineqri 3397 difin 3441 invdif 3446 indif 3447 difundi 3456 indifdir 3460 pwv 3886 uniun 3906 intun 3953 intpr 3954 iuncom 3970 iuncom4 3971 iun0 4021 0iun 4022 iunin2 4028 iunun 4043 iunxun 4044 iunxiun 4046 iinpw 4055 inuni 4238 unidif0 4250 unipw 4302 snnex 4536 unon 4600 xpiundi 4774 xpiundir 4775 0xp 4796 iunxpf 4867 cnvuni 4905 dmiun 4929 dmuni 4930 epini 5095 rniun 5135 cnvresima 5214 imaco 5230 rnco 5231 dfmpt3 5442 imaiun 5877 opabex3d 6256 opabex3 6257 ecid 6735 qsid 6737 mapval2 6815 ixpin 6860 dfz2 9507 infssuzex 10440 dfrp2 10470 1nprm 12622 infpn2 13013 rrgval 14211 2idlval 14451 cnfldui 14538 zrhval 14566 plyun0 15395 |
| Copyright terms: Public domain | W3C validator |