| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqriv | GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2223 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1499 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqid 2229 sb8ab 2351 cbvabw 2352 cbvab 2353 vjust 2800 nfccdeq 3026 csbcow 3135 difeqri 3324 uneqri 3346 incom 3396 ineqri 3397 difin 3441 invdif 3446 indif 3447 difundi 3456 indifdir 3460 pwv 3887 uniun 3907 intun 3954 intpr 3955 iuncom 3971 iuncom4 3972 iun0 4022 0iun 4023 iunin2 4029 iunun 4044 iunxun 4045 iunxiun 4047 iinpw 4056 inuni 4239 unidif0 4251 unipw 4303 snnex 4539 unon 4603 xpiundi 4777 xpiundir 4778 0xp 4799 iunxpf 4870 cnvuni 4908 dmiun 4932 dmuni 4933 epini 5099 rniun 5139 cnvresima 5218 imaco 5234 rnco 5235 dfmpt3 5446 imaiun 5890 opabex3d 6272 opabex3 6273 ecid 6753 qsid 6755 mapval2 6833 ixpin 6878 dfz2 9527 infssuzex 10461 dfrp2 10491 1nprm 12644 infpn2 13035 rrgval 14234 2idlval 14474 cnfldui 14561 zrhval 14589 plyun0 15418 |
| Copyright terms: Public domain | W3C validator |