| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqriv | GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2200 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1477 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eqid 2206 sb8ab 2328 cbvabw 2329 cbvab 2330 vjust 2774 nfccdeq 2998 csbcow 3106 difeqri 3295 uneqri 3317 incom 3367 ineqri 3368 difin 3412 invdif 3417 indif 3418 difundi 3427 indifdir 3431 pwv 3852 uniun 3872 intun 3919 intpr 3920 iuncom 3936 iuncom4 3937 iun0 3987 0iun 3988 iunin2 3994 iunun 4009 iunxun 4010 iunxiun 4012 iinpw 4021 inuni 4204 unidif0 4216 unipw 4266 snnex 4500 unon 4564 xpiundi 4738 xpiundir 4739 0xp 4760 iunxpf 4831 cnvuni 4869 dmiun 4893 dmuni 4894 epini 5059 rniun 5099 cnvresima 5178 imaco 5194 rnco 5195 dfmpt3 5405 imaiun 5839 opabex3d 6216 opabex3 6217 ecid 6695 qsid 6697 mapval2 6775 ixpin 6820 dfz2 9458 infssuzex 10389 dfrp2 10419 1nprm 12486 infpn2 12877 rrgval 14074 2idlval 14314 cnfldui 14401 zrhval 14429 plyun0 15258 |
| Copyright terms: Public domain | W3C validator |