Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqriv | GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2164 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1446 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eqid 2170 sb8ab 2292 cbvabw 2293 cbvab 2294 vjust 2731 nfccdeq 2953 csbcow 3060 difeqri 3247 uneqri 3269 incom 3319 ineqri 3320 difin 3364 invdif 3369 indif 3370 difundi 3379 indifdir 3383 pwv 3795 uniun 3815 intun 3862 intpr 3863 iuncom 3879 iuncom4 3880 iun0 3929 0iun 3930 iunin2 3936 iunun 3951 iunxun 3952 iunxiun 3954 iinpw 3963 inuni 4141 unidif0 4153 unipw 4202 snnex 4433 unon 4495 xpiundi 4669 xpiundir 4670 0xp 4691 iunxpf 4759 cnvuni 4797 dmiun 4820 dmuni 4821 epini 4982 rniun 5021 cnvresima 5100 imaco 5116 rnco 5117 dfmpt3 5320 imaiun 5739 opabex3d 6100 opabex3 6101 ecid 6576 qsid 6578 mapval2 6656 ixpin 6701 dfz2 9284 dfrp2 10220 infssuzex 11904 1nprm 12068 infpn2 12411 |
Copyright terms: Public domain | W3C validator |