| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
| sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1404 exmid1stab 4242 imainss 5086 xpexr2m 5112 funeu2 5285 imadiflem 5338 fnop 5364 ssimaex 5625 isosolem 5874 acexmidlem2 5922 fnovex 5958 cnvoprab 6301 smores3 6360 freccllem 6469 riinerm 6676 pw1fin 6980 enq0sym 7518 peano5nnnn 7978 axcaucvglemres 7985 uzind3 9458 xrltnsym 9887 xsubge0 9975 0fz1 10139 seqf 10575 seq3f1oleml 10627 exp1 10656 expp1 10657 resqrexlemf1 11192 resqrexlemfp1 11193 clim2ser 11521 clim2ser2 11522 isermulc2 11524 summodclem3 11564 fisumss 11576 fsum3cvg3 11580 iserabs 11659 isumshft 11674 isumsplit 11675 geoisum1 11703 geoisum1c 11704 cvgratnnlemnexp 11708 cvgratz 11716 mertenslem2 11720 clim2prod 11723 clim2divap 11724 fprodseq 11767 prodssdc 11773 fprodssdc 11774 effsumlt 11876 efgt1p 11880 gcd0id 12173 nninfctlemfo 12234 lcmgcd 12273 lcmdvds 12274 lcmid 12275 isprm2lem 12311 pcmpt 12539 ennnfonelemjn 12646 issgrpd 13116 mulg1 13337 srglmhm 13627 srgrmhm 13628 ringlghm 13695 ringrghm 13696 neipsm 14498 xmetpsmet 14713 comet 14843 metrest 14850 expcncf 14953 lgscllem 15356 lgsdir2 15382 lgsdirnn0 15396 lgsdinn0 15397 cvgcmp2nlemabs 15789 nconstwlpolem 15822 |
| Copyright terms: Public domain | W3C validator |