| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
| sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1404 exmid1stab 4241 imainss 5085 xpexr2m 5111 funeu2 5284 imadiflem 5337 fnop 5361 ssimaex 5622 isosolem 5871 acexmidlem2 5919 fnovex 5955 cnvoprab 6292 smores3 6351 freccllem 6460 riinerm 6667 pw1fin 6971 enq0sym 7499 peano5nnnn 7959 axcaucvglemres 7966 uzind3 9439 xrltnsym 9868 xsubge0 9956 0fz1 10120 seqf 10556 seq3f1oleml 10608 exp1 10637 expp1 10638 resqrexlemf1 11173 resqrexlemfp1 11174 clim2ser 11502 clim2ser2 11503 isermulc2 11505 summodclem3 11545 fisumss 11557 fsum3cvg3 11561 iserabs 11640 isumshft 11655 isumsplit 11656 geoisum1 11684 geoisum1c 11685 cvgratnnlemnexp 11689 cvgratz 11697 mertenslem2 11701 clim2prod 11704 clim2divap 11705 fprodseq 11748 prodssdc 11754 fprodssdc 11755 effsumlt 11857 efgt1p 11861 gcd0id 12146 nninfctlemfo 12207 lcmgcd 12246 lcmdvds 12247 lcmid 12248 isprm2lem 12284 pcmpt 12512 ennnfonelemjn 12619 issgrpd 13055 mulg1 13259 srglmhm 13549 srgrmhm 13550 ringlghm 13617 ringrghm 13618 neipsm 14390 xmetpsmet 14605 comet 14735 metrest 14742 expcncf 14845 lgscllem 15248 lgsdir2 15274 lgsdirnn0 15288 lgsdinn0 15289 cvgcmp2nlemabs 15676 nconstwlpolem 15709 |
| Copyright terms: Public domain | W3C validator |