Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 1 | biimpri 132 | . 2 ⊢ (𝜑 → 𝜒) |
3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan2 284 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl2anbr 290 xordc1 1383 imainss 5019 xpexr2m 5045 funeu2 5214 imadiflem 5267 fnop 5291 ssimaex 5547 isosolem 5792 acexmidlem2 5839 fnovex 5875 cnvoprab 6202 smores3 6261 freccllem 6370 riinerm 6574 pw1fin 6876 enq0sym 7373 peano5nnnn 7833 axcaucvglemres 7840 uzind3 9304 xrltnsym 9729 xsubge0 9817 0fz1 9980 seqf 10396 seq3f1oleml 10438 exp1 10461 expp1 10462 resqrexlemf1 10950 resqrexlemfp1 10951 clim2ser 11278 clim2ser2 11279 isermulc2 11281 summodclem3 11321 fisumss 11333 fsum3cvg3 11337 iserabs 11416 isumshft 11431 isumsplit 11432 geoisum1 11460 geoisum1c 11461 cvgratnnlemnexp 11465 cvgratz 11473 mertenslem2 11477 clim2prod 11480 clim2divap 11481 fprodseq 11524 prodssdc 11530 fprodssdc 11531 effsumlt 11633 efgt1p 11637 gcd0id 11912 lcmgcd 12010 lcmdvds 12011 lcmid 12012 isprm2lem 12048 pcmpt 12273 ennnfonelemjn 12335 neipsm 12794 xmetpsmet 13009 comet 13139 metrest 13146 expcncf 13232 lgscllem 13548 lgsdir2 13574 lgsdirnn0 13588 lgsdinn0 13589 exmid1stab 13880 cvgcmp2nlemabs 13911 nconstwlpolem 13943 |
Copyright terms: Public domain | W3C validator |