| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
| sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1412 exmid1stab 4251 imainss 5097 xpexr2m 5123 funeu2 5296 imadiflem 5352 fnop 5378 ssimaex 5639 isosolem 5892 acexmidlem2 5940 fnovex 5976 cnvoprab 6319 smores3 6378 freccllem 6487 riinerm 6694 pw1fin 7006 enq0sym 7544 peano5nnnn 8004 axcaucvglemres 8011 uzind3 9485 xrltnsym 9914 xsubge0 10002 0fz1 10166 seqf 10607 seq3f1oleml 10659 exp1 10688 expp1 10689 resqrexlemf1 11290 resqrexlemfp1 11291 clim2ser 11619 clim2ser2 11620 isermulc2 11622 summodclem3 11662 fisumss 11674 fsum3cvg3 11678 iserabs 11757 isumshft 11772 isumsplit 11773 geoisum1 11801 geoisum1c 11802 cvgratnnlemnexp 11806 cvgratz 11814 mertenslem2 11818 clim2prod 11821 clim2divap 11822 fprodseq 11865 prodssdc 11871 fprodssdc 11872 effsumlt 11974 efgt1p 11978 gcd0id 12271 nninfctlemfo 12332 lcmgcd 12371 lcmdvds 12372 lcmid 12373 isprm2lem 12409 pcmpt 12637 ennnfonelemjn 12744 issgrpd 13215 mulg1 13436 srglmhm 13726 srgrmhm 13727 ringlghm 13794 ringrghm 13795 neipsm 14597 xmetpsmet 14812 comet 14942 metrest 14949 expcncf 15052 lgscllem 15455 lgsdir2 15481 lgsdirnn0 15495 lgsdinn0 15496 cvgcmp2nlemabs 15933 nconstwlpolem 15966 |
| Copyright terms: Public domain | W3C validator |