| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
| sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1404 exmid1stab 4242 imainss 5086 xpexr2m 5112 funeu2 5285 imadiflem 5338 fnop 5364 ssimaex 5625 isosolem 5874 acexmidlem2 5922 fnovex 5958 cnvoprab 6301 smores3 6360 freccllem 6469 riinerm 6676 pw1fin 6980 enq0sym 7516 peano5nnnn 7976 axcaucvglemres 7983 uzind3 9456 xrltnsym 9885 xsubge0 9973 0fz1 10137 seqf 10573 seq3f1oleml 10625 exp1 10654 expp1 10655 resqrexlemf1 11190 resqrexlemfp1 11191 clim2ser 11519 clim2ser2 11520 isermulc2 11522 summodclem3 11562 fisumss 11574 fsum3cvg3 11578 iserabs 11657 isumshft 11672 isumsplit 11673 geoisum1 11701 geoisum1c 11702 cvgratnnlemnexp 11706 cvgratz 11714 mertenslem2 11718 clim2prod 11721 clim2divap 11722 fprodseq 11765 prodssdc 11771 fprodssdc 11772 effsumlt 11874 efgt1p 11878 gcd0id 12171 nninfctlemfo 12232 lcmgcd 12271 lcmdvds 12272 lcmid 12273 isprm2lem 12309 pcmpt 12537 ennnfonelemjn 12644 issgrpd 13114 mulg1 13335 srglmhm 13625 srgrmhm 13626 ringlghm 13693 ringrghm 13694 neipsm 14474 xmetpsmet 14689 comet 14819 metrest 14826 expcncf 14929 lgscllem 15332 lgsdir2 15358 lgsdirnn0 15372 lgsdinn0 15373 cvgcmp2nlemabs 15763 nconstwlpolem 15796 |
| Copyright terms: Public domain | W3C validator |