Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜒) |
3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: syl2anbr 292 xordc1 1393 imainss 5036 xpexr2m 5062 funeu2 5234 imadiflem 5287 fnop 5311 ssimaex 5569 isosolem 5815 acexmidlem2 5862 fnovex 5898 cnvoprab 6225 smores3 6284 freccllem 6393 riinerm 6598 pw1fin 6900 enq0sym 7406 peano5nnnn 7866 axcaucvglemres 7873 uzind3 9339 xrltnsym 9764 xsubge0 9852 0fz1 10015 seqf 10431 seq3f1oleml 10473 exp1 10496 expp1 10497 resqrexlemf1 10985 resqrexlemfp1 10986 clim2ser 11313 clim2ser2 11314 isermulc2 11316 summodclem3 11356 fisumss 11368 fsum3cvg3 11372 iserabs 11451 isumshft 11466 isumsplit 11467 geoisum1 11495 geoisum1c 11496 cvgratnnlemnexp 11500 cvgratz 11508 mertenslem2 11512 clim2prod 11515 clim2divap 11516 fprodseq 11559 prodssdc 11565 fprodssdc 11566 effsumlt 11668 efgt1p 11672 gcd0id 11947 lcmgcd 12045 lcmdvds 12046 lcmid 12047 isprm2lem 12083 pcmpt 12308 ennnfonelemjn 12370 mulg1 12851 srglmhm 12973 srgrmhm 12974 neipsm 13225 xmetpsmet 13440 comet 13570 metrest 13577 expcncf 13663 lgscllem 13979 lgsdir2 14005 lgsdirnn0 14019 lgsdinn0 14020 exmid1stab 14310 cvgcmp2nlemabs 14341 nconstwlpolem 14373 |
Copyright terms: Public domain | W3C validator |