| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
| sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1413 exmid1stab 4268 imainss 5117 xpexr2m 5143 funeu2 5316 imadiflem 5372 fnop 5398 ssimaex 5663 isosolem 5916 acexmidlem2 5964 fnovex 6000 cnvoprab 6343 smores3 6402 freccllem 6511 riinerm 6718 pw1fin 7033 enq0sym 7580 peano5nnnn 8040 axcaucvglemres 8047 uzind3 9521 xrltnsym 9950 xsubge0 10038 0fz1 10202 seqf 10646 seq3f1oleml 10698 exp1 10727 expp1 10728 resqrexlemf1 11434 resqrexlemfp1 11435 clim2ser 11763 clim2ser2 11764 isermulc2 11766 summodclem3 11806 fisumss 11818 fsum3cvg3 11822 iserabs 11901 isumshft 11916 isumsplit 11917 geoisum1 11945 geoisum1c 11946 cvgratnnlemnexp 11950 cvgratz 11958 mertenslem2 11962 clim2prod 11965 clim2divap 11966 fprodseq 12009 prodssdc 12015 fprodssdc 12016 effsumlt 12118 efgt1p 12122 gcd0id 12415 nninfctlemfo 12476 lcmgcd 12515 lcmdvds 12516 lcmid 12517 isprm2lem 12553 pcmpt 12781 ennnfonelemjn 12888 issgrpd 13359 mulg1 13580 srglmhm 13870 srgrmhm 13871 ringlghm 13938 ringrghm 13939 neipsm 14741 xmetpsmet 14956 comet 15086 metrest 15093 expcncf 15196 lgscllem 15599 lgsdir2 15625 lgsdirnn0 15639 lgsdinn0 15640 cvgcmp2nlemabs 16173 nconstwlpolem 16206 |
| Copyright terms: Public domain | W3C validator |