| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
| sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1435 exmid1stab 4291 imainss 5143 xpexr2m 5169 funeu2 5343 imadiflem 5399 fnop 5425 ssimaex 5694 isosolem 5947 acexmidlem2 5997 fnovex 6033 cnvoprab 6378 smores3 6437 freccllem 6546 riinerm 6753 pw1fin 7068 enq0sym 7615 peano5nnnn 8075 axcaucvglemres 8082 uzind3 9556 xrltnsym 9985 xsubge0 10073 0fz1 10237 seqf 10681 seq3f1oleml 10733 exp1 10762 expp1 10763 resqrexlemf1 11514 resqrexlemfp1 11515 clim2ser 11843 clim2ser2 11844 isermulc2 11846 summodclem3 11886 fisumss 11898 fsum3cvg3 11902 iserabs 11981 isumshft 11996 isumsplit 11997 geoisum1 12025 geoisum1c 12026 cvgratnnlemnexp 12030 cvgratz 12038 mertenslem2 12042 clim2prod 12045 clim2divap 12046 fprodseq 12089 prodssdc 12095 fprodssdc 12096 effsumlt 12198 efgt1p 12202 gcd0id 12495 nninfctlemfo 12556 lcmgcd 12595 lcmdvds 12596 lcmid 12597 isprm2lem 12633 pcmpt 12861 ennnfonelemjn 12968 issgrpd 13440 mulg1 13661 srglmhm 13951 srgrmhm 13952 ringlghm 14019 ringrghm 14020 neipsm 14822 xmetpsmet 15037 comet 15167 metrest 15174 expcncf 15277 lgscllem 15680 lgsdir2 15706 lgsdirnn0 15720 lgsdinn0 15721 cvgcmp2nlemabs 16359 nconstwlpolem 16392 |
| Copyright terms: Public domain | W3C validator |