| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan2br | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| sylan2br.1 | ⊢ (𝜒 ↔ 𝜑) |
| sylan2br.2 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| sylan2br | ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2br.1 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜒) |
| 3 | sylan2br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan2 286 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: syl2anbr 292 xordc1 1413 exmid1stab 4252 imainss 5098 xpexr2m 5124 funeu2 5297 imadiflem 5353 fnop 5379 ssimaex 5640 isosolem 5893 acexmidlem2 5941 fnovex 5977 cnvoprab 6320 smores3 6379 freccllem 6488 riinerm 6695 pw1fin 7007 enq0sym 7545 peano5nnnn 8005 axcaucvglemres 8012 uzind3 9486 xrltnsym 9915 xsubge0 10003 0fz1 10167 seqf 10609 seq3f1oleml 10661 exp1 10690 expp1 10691 resqrexlemf1 11319 resqrexlemfp1 11320 clim2ser 11648 clim2ser2 11649 isermulc2 11651 summodclem3 11691 fisumss 11703 fsum3cvg3 11707 iserabs 11786 isumshft 11801 isumsplit 11802 geoisum1 11830 geoisum1c 11831 cvgratnnlemnexp 11835 cvgratz 11843 mertenslem2 11847 clim2prod 11850 clim2divap 11851 fprodseq 11894 prodssdc 11900 fprodssdc 11901 effsumlt 12003 efgt1p 12007 gcd0id 12300 nninfctlemfo 12361 lcmgcd 12400 lcmdvds 12401 lcmid 12402 isprm2lem 12438 pcmpt 12666 ennnfonelemjn 12773 issgrpd 13244 mulg1 13465 srglmhm 13755 srgrmhm 13756 ringlghm 13823 ringrghm 13824 neipsm 14626 xmetpsmet 14841 comet 14971 metrest 14978 expcncf 15081 lgscllem 15484 lgsdir2 15510 lgsdirnn0 15524 lgsdinn0 15525 cvgcmp2nlemabs 15971 nconstwlpolem 16004 |
| Copyright terms: Public domain | W3C validator |