Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextbdist Structured version   Visualization version   GIF version

Theorem axextbdist 33495
Description: axextb 2711 with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
axextbdist ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦)))

Proof of Theorem axextbdist
StepHypRef Expression
1 axc9 2381 . . . 4 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
21imp 410 . . 3 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
3 nfnae 2433 . . . . 5 𝑧 ¬ ∀𝑧 𝑧 = 𝑥
4 nfnae 2433 . . . . 5 𝑧 ¬ ∀𝑧 𝑧 = 𝑦
53, 4nfan 1907 . . . 4 𝑧(¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦)
6 elequ2 2125 . . . . 5 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
76a1i 11 . . . 4 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦)))
85, 7alimd 2210 . . 3 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧 𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦)))
92, 8syld 47 . 2 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 → ∀𝑧(𝑧𝑥𝑧𝑦)))
10 axextdist 33494 . 2 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
119, 10impbid 215 1 ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-13 2371  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-clel 2816  df-nfc 2886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator