![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exnel | Structured version Visualization version GIF version |
Description: There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.) |
Ref | Expression |
---|---|
exnel | ⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 9634 | . 2 ⊢ ¬ 𝑦 ∈ 𝑦 | |
2 | 1 | nfth 1798 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝑦 |
3 | ax8 2112 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑦)) | |
4 | 3 | con3d 152 | . . 3 ⊢ (𝑥 = 𝑦 → (¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑦)) |
5 | 2, 4 | spime 2392 | . 2 ⊢ (¬ 𝑦 ∈ 𝑦 → ∃𝑥 ¬ 𝑥 ∈ 𝑦) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-13 2375 ax-ext 2706 ax-sep 5302 ax-pr 5438 ax-reg 9630 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |