Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exnel Structured version   Visualization version   GIF version

Theorem exnel 35825
Description: There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
exnel 𝑥 ¬ 𝑥𝑦

Proof of Theorem exnel
StepHypRef Expression
1 elirrv 9615 . 2 ¬ 𝑦𝑦
21nfth 1801 . . 3 𝑥 ¬ 𝑦𝑦
3 ax8 2115 . . . 4 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
43con3d 152 . . 3 (𝑥 = 𝑦 → (¬ 𝑦𝑦 → ¬ 𝑥𝑦))
52, 4spime 2394 . 2 𝑦𝑦 → ∃𝑥 ¬ 𝑥𝑦)
61, 5ax-mp 5 1 𝑥 ¬ 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-13 2377  ax-ext 2708  ax-sep 5271  ax-pr 5407  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator