Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exnel Structured version   Visualization version   GIF version

Theorem exnel 33806
Description: There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.)
Assertion
Ref Expression
exnel 𝑥 ¬ 𝑥𝑦

Proof of Theorem exnel
StepHypRef Expression
1 elirrv 9383 . 2 ¬ 𝑦𝑦
21nfth 1799 . . 3 𝑥 ¬ 𝑦𝑦
3 ax8 2107 . . . 4 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
43con3d 152 . . 3 (𝑥 = 𝑦 → (¬ 𝑦𝑦 → ¬ 𝑥𝑦))
52, 4spime 2384 . 2 𝑦𝑦 → ∃𝑥 ¬ 𝑥𝑦)
61, 5ax-mp 5 1 𝑥 ¬ 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-12 2166  ax-13 2367  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-reg 9379
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3060  df-rex 3069  df-v 3436  df-dif 3892  df-un 3894  df-nul 4260  df-sn 4565  df-pr 4567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator