| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exnel | Structured version Visualization version GIF version | ||
| Description: There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.) |
| Ref | Expression |
|---|---|
| exnel | ⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirrv 9483 | . 2 ⊢ ¬ 𝑦 ∈ 𝑦 | |
| 2 | 1 | nfth 1802 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝑦 |
| 3 | ax8 2117 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑦)) | |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝑥 = 𝑦 → (¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑦)) |
| 5 | 2, 4 | spime 2389 | . 2 ⊢ (¬ 𝑦 ∈ 𝑦 → ∃𝑥 ¬ 𝑥 ∈ 𝑦) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-13 2372 ax-sep 5232 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |