| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exnel | Structured version Visualization version GIF version | ||
| Description: There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.) |
| Ref | Expression |
|---|---|
| exnel | ⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirrv 9615 | . 2 ⊢ ¬ 𝑦 ∈ 𝑦 | |
| 2 | 1 | nfth 1801 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝑦 |
| 3 | ax8 2115 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑦)) | |
| 4 | 3 | con3d 152 | . . 3 ⊢ (𝑥 = 𝑦 → (¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑦)) |
| 5 | 2, 4 | spime 2394 | . 2 ⊢ (¬ 𝑦 ∈ 𝑦 → ∃𝑥 ¬ 𝑥 ∈ 𝑦) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-13 2377 ax-ext 2708 ax-sep 5271 ax-pr 5407 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |