Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.41vvv | Structured version Visualization version GIF version |
Description: Version of 19.41 2228 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
Ref | Expression |
---|---|
19.41vvv | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41vv 1954 | . . 3 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑦∃𝑧𝜑 ∧ 𝜓)) | |
2 | 1 | exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
3 | 19.41v 1953 | . 2 ⊢ (∃𝑥(∃𝑦∃𝑧𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦∃𝑧𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: 19.41vvvv 1956 eloprabga 7382 eloprabgaOLD 7383 dftpos3 8060 |
Copyright terms: Public domain | W3C validator |