MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41vvv Structured version   Visualization version   GIF version

Theorem 19.41vvv 1951
Description: Version of 19.41 2236 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vvv (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem 19.41vvv
StepHypRef Expression
1 19.41vv 1950 . . 3 (∃𝑦𝑧(𝜑𝜓) ↔ (∃𝑦𝑧𝜑𝜓))
21exbii 1846 . 2 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(∃𝑦𝑧𝜑𝜓))
3 19.41v 1949 . 2 (∃𝑥(∃𝑦𝑧𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
42, 3bitri 275 1 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  19.41vvvv  1952  eloprabga  7560  eloprabgaOLD  7561  dftpos3  8287
  Copyright terms: Public domain W3C validator