MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41vvv Structured version   Visualization version   GIF version

Theorem 19.41vvv 1955
Description: Version of 19.41 2228 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vvv (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem 19.41vvv
StepHypRef Expression
1 19.41vv 1954 . . 3 (∃𝑦𝑧(𝜑𝜓) ↔ (∃𝑦𝑧𝜑𝜓))
21exbii 1850 . 2 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(∃𝑦𝑧𝜑𝜓))
3 19.41v 1953 . 2 (∃𝑥(∃𝑦𝑧𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
42, 3bitri 274 1 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (∃𝑥𝑦𝑧𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  19.41vvvv  1956  eloprabga  7382  eloprabgaOLD  7383  dftpos3  8060
  Copyright terms: Public domain W3C validator