MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41 Structured version   Visualization version   GIF version

Theorem 19.41 2231
Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1954 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypothesis
Ref Expression
19.41.1 𝑥𝜓
Assertion
Ref Expression
19.41 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Proof of Theorem 19.41
StepHypRef Expression
1 19.40 1890 . . 3 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
2 19.41.1 . . . . 5 𝑥𝜓
3219.9 2201 . . . 4 (∃𝑥𝜓𝜓)
43anbi2i 622 . . 3 ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑𝜓))
51, 4sylib 217 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
6 pm3.21 471 . . . 4 (𝜓 → (𝜑 → (𝜑𝜓)))
72, 6eximd 2212 . . 3 (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
87impcom 407 . 2 ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))
95, 8impbii 208 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  19.42  2232  eean  2348  eeeanv  2350  equsexALT  2419  2sb5rf  2472  r19.41  3274  eliunxp  5735  dfopab2  7865  dfoprab3s  7866  xpcomco  8802  mpomptxf  30918  bnj605  32787  bnj607  32796  2sb5nd  42069  2sb5ndVD  42419  2sb5ndALT  42441  eliunxp2  45557
  Copyright terms: Public domain W3C validator