| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1950 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| 19.41.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.41 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1887 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | 19.41.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | 19.9 2208 | . . . 4 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
| 4 | 3 | anbi2i 623 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | 1, 4 | sylib 218 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 6 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 7 | 2, 6 | eximd 2219 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 8 | 7 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: 19.42 2239 eean 2348 eeeanv 2350 equsexALT 2419 2sb5rf 2472 r19.41 3236 eliunxp 5772 dfopab2 7979 dfoprab3s 7980 xpcomco 8975 mpomptxf 32651 bnj605 34911 bnj607 34920 2sb5nd 44593 2sb5ndVD 44942 2sb5ndALT 44964 eliunxp2 48365 |
| Copyright terms: Public domain | W3C validator |