![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.41 | Structured version Visualization version GIF version |
Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1949 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
Ref | Expression |
---|---|
19.41.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
19.41 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1885 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | 19.41.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | 19.9 2206 | . . . 4 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
4 | 3 | anbi2i 622 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
5 | 1, 4 | sylib 218 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
6 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
7 | 2, 6 | eximd 2217 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
8 | 7 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 |
This theorem is referenced by: 19.42 2237 eean 2354 eeeanv 2356 equsexALT 2427 2sb5rf 2480 r19.41 3269 eliunxp 5862 dfopab2 8093 dfoprab3s 8094 xpcomco 9128 mpomptxf 32695 bnj605 34883 bnj607 34892 2sb5nd 44531 2sb5ndVD 44881 2sb5ndALT 44903 eliunxp2 48058 |
Copyright terms: Public domain | W3C validator |