| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1949 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| 19.41.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.41 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1886 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | 19.41.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | 19.9 2206 | . . . 4 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
| 4 | 3 | anbi2i 623 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | 1, 4 | sylib 218 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 6 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 7 | 2, 6 | eximd 2217 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 8 | 7 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: 19.42 2237 eean 2346 eeeanv 2348 equsexALT 2418 2sb5rf 2471 r19.41 3242 eliunxp 5804 dfopab2 8034 dfoprab3s 8035 xpcomco 9036 mpomptxf 32608 bnj605 34904 bnj607 34913 2sb5nd 44557 2sb5ndVD 44906 2sb5ndALT 44928 eliunxp2 48326 |
| Copyright terms: Public domain | W3C validator |