MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41 Structured version   Visualization version   GIF version

Theorem 19.41 2228
Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1953 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypothesis
Ref Expression
19.41.1 𝑥𝜓
Assertion
Ref Expression
19.41 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Proof of Theorem 19.41
StepHypRef Expression
1 19.40 1889 . . 3 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
2 19.41.1 . . . . 5 𝑥𝜓
3219.9 2198 . . . 4 (∃𝑥𝜓𝜓)
43anbi2i 623 . . 3 ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑𝜓))
51, 4sylib 217 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
6 pm3.21 472 . . . 4 (𝜓 → (𝜑 → (𝜑𝜓)))
72, 6eximd 2209 . . 3 (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
87impcom 408 . 2 ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))
95, 8impbii 208 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by:  19.42  2229  eean  2346  eeeanv  2348  equsexALT  2419  2sb5rf  2472  r19.41  3277  eliunxp  5746  dfopab2  7892  dfoprab3s  7893  xpcomco  8849  mpomptxf  31016  bnj605  32887  bnj607  32896  2sb5nd  42180  2sb5ndVD  42530  2sb5ndALT  42552  eliunxp2  45669
  Copyright terms: Public domain W3C validator