![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.41 | Structured version Visualization version GIF version |
Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1927 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
Ref | Expression |
---|---|
19.41.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
19.41 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1868 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | 19.41.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | 19.9 2170 | . . . 4 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
4 | 3 | anbi2i 622 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
5 | 1, 4 | sylib 219 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
6 | pm3.21 472 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
7 | 2, 6 | eximd 2181 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
8 | 7 | impcom 408 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 210 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∃wex 1761 Ⅎwnf 1765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-12 2141 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-nf 1766 |
This theorem is referenced by: 19.42 2203 equsexv 2232 eean 2325 eeeanv 2327 equsexALT 2397 2sb5rf 2453 r19.41 3309 eliunxp 5594 dfopab2 7606 dfoprab3s 7607 xpcomco 8454 mpomptxf 30115 bnj605 31795 bnj607 31804 2sb5nd 40433 2sb5ndVD 40783 2sb5ndALT 40805 eliunxp2 43860 |
Copyright terms: Public domain | W3C validator |