MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41 Structured version   Visualization version   GIF version

Theorem 19.41 2236
Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1949 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypothesis
Ref Expression
19.41.1 𝑥𝜓
Assertion
Ref Expression
19.41 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Proof of Theorem 19.41
StepHypRef Expression
1 19.40 1886 . . 3 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
2 19.41.1 . . . . 5 𝑥𝜓
3219.9 2206 . . . 4 (∃𝑥𝜓𝜓)
43anbi2i 623 . . 3 ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑𝜓))
51, 4sylib 218 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
6 pm3.21 471 . . . 4 (𝜓 → (𝜑 → (𝜑𝜓)))
72, 6eximd 2217 . . 3 (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
87impcom 407 . 2 ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))
95, 8impbii 209 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784
This theorem is referenced by:  19.42  2237  eean  2346  eeeanv  2348  equsexALT  2418  2sb5rf  2471  r19.41  3242  eliunxp  5804  dfopab2  8034  dfoprab3s  8035  xpcomco  9036  mpomptxf  32608  bnj605  34904  bnj607  34913  2sb5nd  44557  2sb5ndVD  44906  2sb5ndALT  44928  eliunxp2  48326
  Copyright terms: Public domain W3C validator