MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41 Structured version   Visualization version   GIF version

Theorem 19.41 2202
Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1927 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypothesis
Ref Expression
19.41.1 𝑥𝜓
Assertion
Ref Expression
19.41 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Proof of Theorem 19.41
StepHypRef Expression
1 19.40 1868 . . 3 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
2 19.41.1 . . . . 5 𝑥𝜓
3219.9 2170 . . . 4 (∃𝑥𝜓𝜓)
43anbi2i 622 . . 3 ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑𝜓))
51, 4sylib 219 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
6 pm3.21 472 . . . 4 (𝜓 → (𝜑 → (𝜑𝜓)))
72, 6eximd 2181 . . 3 (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
87impcom 408 . 2 ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))
95, 8impbii 210 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  wex 1761  wnf 1765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-12 2141
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762  df-nf 1766
This theorem is referenced by:  19.42  2203  equsexv  2232  eean  2325  eeeanv  2327  equsexALT  2397  2sb5rf  2453  r19.41  3309  eliunxp  5594  dfopab2  7606  dfoprab3s  7607  xpcomco  8454  mpomptxf  30115  bnj605  31795  bnj607  31804  2sb5nd  40433  2sb5ndVD  40783  2sb5ndALT  40805  eliunxp2  43860
  Copyright terms: Public domain W3C validator