MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41 Structured version   Visualization version   GIF version

Theorem 19.41 2240
Description: Theorem 19.41 of [Margaris] p. 90. See 19.41v 1950 for a version requiring fewer axioms. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypothesis
Ref Expression
19.41.1 𝑥𝜓
Assertion
Ref Expression
19.41 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Proof of Theorem 19.41
StepHypRef Expression
1 19.40 1887 . . 3 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
2 19.41.1 . . . . 5 𝑥𝜓
3219.9 2210 . . . 4 (∃𝑥𝜓𝜓)
43anbi2i 623 . . 3 ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ (∃𝑥𝜑𝜓))
51, 4sylib 218 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
6 pm3.21 471 . . . 4 (𝜓 → (𝜑 → (𝜑𝜓)))
72, 6eximd 2221 . . 3 (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
87impcom 407 . 2 ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))
95, 8impbii 209 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2182
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785
This theorem is referenced by:  19.42  2241  eean  2350  eeeanv  2352  equsexALT  2421  2sb5rf  2474  r19.41  3237  eliunxp  5783  dfopab2  7993  dfoprab3s  7994  xpcomco  8991  mpomptxf  32683  bnj605  34991  bnj607  35000  2sb5nd  44717  2sb5ndVD  45066  2sb5ndALT  45088  eliunxp2  48496
  Copyright terms: Public domain W3C validator