MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41vv Structured version   Visualization version   GIF version

Theorem 19.41vv 1957
Description: Version of 19.41 2231 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vv (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 19.41vv
StepHypRef Expression
1 19.41v 1956 . . 3 (∃𝑦(𝜑𝜓) ↔ (∃𝑦𝜑𝜓))
21exbii 1853 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(∃𝑦𝜑𝜓))
3 19.41v 1956 . 2 (∃𝑥(∃𝑦𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
42, 3bitri 274 1 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786
This theorem is referenced by:  19.41vvv  1958  rabxp  5634  copsex2gb  5713  mpomptx  7378  xpassen  8822  dfac5lem1  9863  fusgr2wsp2nb  28677  bnj996  32915  dfdm5  33726  dfrn5  33727  elima4  33729  brtxp2  34162  brpprod3a  34167  brimg  34218  brsuccf  34222  brxrn2  36484  diblsmopel  39164  en2pr  41107  mpomptx2  45622
  Copyright terms: Public domain W3C validator