| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41vv | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2236 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
| Ref | Expression |
|---|---|
| 19.41vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1949 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑦𝜑 ∧ 𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜓)) |
| 3 | 19.41v 1949 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.41vvv 1951 cgsex4g 3512 rabxp 5707 copsex2gb 5790 mpomptx 7525 xpassen 9085 dfac5lem1 10142 fusgr2wsp2nb 30320 bnj996 34992 dfdm5 35795 dfrn5 35796 elima4 35798 brtxp2 35904 brpprod3a 35909 brimg 35960 brsuccf 35964 brxrn2 38398 diblsmopel 41195 en2pr 43538 mpomptx2 48277 |
| Copyright terms: Public domain | W3C validator |