Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.41vv | Structured version Visualization version GIF version |
Description: Version of 19.41 2226 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
Ref | Expression |
---|---|
19.41vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1951 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑦𝜑 ∧ 𝜓)) | |
2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜓)) |
3 | 19.41v 1951 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 |
This theorem is referenced by: 19.41vvv 1953 rabxp 5646 copsex2gb 5728 mpomptx 7419 xpassen 8891 dfac5lem1 9929 fusgr2wsp2nb 28747 bnj996 32985 dfdm5 33796 dfrn5 33797 elima4 33799 brtxp2 34232 brpprod3a 34237 brimg 34288 brsuccf 34292 brxrn2 36589 diblsmopel 39385 en2pr 41367 mpomptx2 45914 |
Copyright terms: Public domain | W3C validator |