![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.41vv | Structured version Visualization version GIF version |
Description: Version of 19.41 2226 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
Ref | Expression |
---|---|
19.41vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1951 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑦𝜑 ∧ 𝜓)) | |
2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜓)) |
3 | 19.41v 1951 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 |
This theorem is referenced by: 19.41vvv 1953 cgsex4g 3519 rabxp 5723 copsex2gb 5805 mpomptx 7523 xpassen 9068 dfac5lem1 10120 fusgr2wsp2nb 29854 bnj996 34265 dfdm5 35048 dfrn5 35049 elima4 35051 brtxp2 35157 brpprod3a 35162 brimg 35213 brsuccf 35217 brxrn2 37548 diblsmopel 40345 en2pr 42600 mpomptx2 47098 |
Copyright terms: Public domain | W3C validator |