| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41vv | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2236 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
| Ref | Expression |
|---|---|
| 19.41vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1949 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑦𝜑 ∧ 𝜓)) | |
| 2 | 1 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜓)) |
| 3 | 19.41v 1949 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.41vvv 1951 cgsex4g 3494 rabxp 5686 copsex2gb 5769 mpomptx 7502 xpassen 9035 dfac5lem1 10076 fusgr2wsp2nb 30263 bnj996 34946 dfdm5 35760 dfrn5 35761 elima4 35763 brtxp2 35869 brpprod3a 35874 brimg 35925 brsuccf 35929 brxrn2 38357 diblsmopel 41165 en2pr 43536 mpomptx2 48323 |
| Copyright terms: Public domain | W3C validator |