![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.41vv | Structured version Visualization version GIF version |
Description: Version of 19.41 2228 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
Ref | Expression |
---|---|
19.41vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41v 1953 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑦𝜑 ∧ 𝜓)) | |
2 | 1 | exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜓)) |
3 | 19.41v 1953 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: 19.41vvv 1955 cgsex4g 3520 rabxp 5722 copsex2gb 5804 mpomptx 7517 xpassen 9062 dfac5lem1 10114 fusgr2wsp2nb 29576 bnj996 33955 dfdm5 34732 dfrn5 34733 elima4 34735 brtxp2 34841 brpprod3a 34846 brimg 34897 brsuccf 34901 brxrn2 37233 diblsmopel 40030 en2pr 42283 mpomptx2 46963 |
Copyright terms: Public domain | W3C validator |