MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41vv Structured version   Visualization version   GIF version

Theorem 19.41vv 1954
Description: Version of 19.41 2228 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vv (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 19.41vv
StepHypRef Expression
1 19.41v 1953 . . 3 (∃𝑦(𝜑𝜓) ↔ (∃𝑦𝜑𝜓))
21exbii 1850 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(∃𝑦𝜑𝜓))
3 19.41v 1953 . 2 (∃𝑥(∃𝑦𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
42, 3bitri 274 1 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝑦𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782
This theorem is referenced by:  19.41vvv  1955  cgsex4g  3520  rabxp  5722  copsex2gb  5804  mpomptx  7517  xpassen  9062  dfac5lem1  10114  fusgr2wsp2nb  29576  bnj996  33955  dfdm5  34732  dfrn5  34733  elima4  34735  brtxp2  34841  brpprod3a  34846  brimg  34897  brsuccf  34901  brxrn2  37233  diblsmopel  40030  en2pr  42283  mpomptx2  46963
  Copyright terms: Public domain W3C validator