| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41vv | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2238 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995.) |
| Ref | Expression |
|---|---|
| 19.41vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.41v 1950 | . . 3 ⊢ (∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑦𝜑 ∧ 𝜓)) | |
| 2 | 1 | exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜓)) |
| 3 | 19.41v 1950 | . 2 ⊢ (∃𝑥(∃𝑦𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: 19.41vvv 1952 cgsex4g 3483 rabxp 5664 copsex2gb 5746 mpomptx 7459 xpassen 8984 dfac5lem1 10011 fusgr2wsp2nb 30309 bnj996 34963 dfdm5 35805 dfrn5 35806 elima4 35808 brtxp2 35914 brpprod3a 35919 brimg 35970 brsuccf 35974 brxrn2 38402 diblsmopel 41209 en2pr 43579 mpomptx2 48365 |
| Copyright terms: Public domain | W3C validator |