MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos3 Structured version   Visualization version   GIF version

Theorem dftpos3 7912
Description: Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 5565. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos3 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem dftpos3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 relcnv 5969 . . . . . . . . . 10 Rel dom 𝐹
2 dmtpos 7906 . . . . . . . . . . 11 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
32releqd 5655 . . . . . . . . . 10 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ↔ Rel dom 𝐹))
41, 3mpbiri 260 . . . . . . . . 9 (Rel dom 𝐹 → Rel dom tpos 𝐹)
5 reltpos 7899 . . . . . . . . 9 Rel tpos 𝐹
64, 5jctil 522 . . . . . . . 8 (Rel dom 𝐹 → (Rel tpos 𝐹 ∧ Rel dom tpos 𝐹))
7 relrelss 6126 . . . . . . . 8 ((Rel tpos 𝐹 ∧ Rel dom tpos 𝐹) ↔ tpos 𝐹 ⊆ ((V × V) × V))
86, 7sylib 220 . . . . . . 7 (Rel dom 𝐹 → tpos 𝐹 ⊆ ((V × V) × V))
98sseld 3968 . . . . . 6 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹𝑤 ∈ ((V × V) × V)))
10 elvvv 5629 . . . . . 6 (𝑤 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
119, 10syl6ib 253 . . . . 5 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 → ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
1211pm4.71rd 565 . . . 4 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹)))
13 19.41vvv 1952 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹))
14 eleq1 2902 . . . . . . . 8 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹))
15 df-br 5069 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹)
16 brtpos 7903 . . . . . . . . . 10 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1716elv 3501 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1815, 17bitr3i 279 . . . . . . . 8 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1914, 18syl6bb 289 . . . . . . 7 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2019pm5.32i 577 . . . . . 6 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
21203exbii 1850 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2213, 21bitr3i 279 . . . 4 ((∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2312, 22syl6bb 289 . . 3 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)))
2423abbi2dv 2952 . 2 (Rel dom 𝐹 → tpos 𝐹 = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)})
25 df-oprab 7162 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)}
2624, 25syl6eqr 2876 1 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  {cab 2801  Vcvv 3496  wss 3938  cop 4575   class class class wbr 5068   × cxp 5555  ccnv 5556  dom cdm 5557  Rel wrel 5562  {coprab 7159  tpos ctpos 7893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-oprab 7162  df-tpos 7894
This theorem is referenced by:  tposoprab  7930
  Copyright terms: Public domain W3C validator