MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos3 Structured version   Visualization version   GIF version

Theorem dftpos3 8243
Description: Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 5662. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos3 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem dftpos3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 relcnv 6091 . . . . . . . . . 10 Rel dom 𝐹
2 dmtpos 8237 . . . . . . . . . . 11 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
32releqd 5757 . . . . . . . . . 10 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ↔ Rel dom 𝐹))
41, 3mpbiri 258 . . . . . . . . 9 (Rel dom 𝐹 → Rel dom tpos 𝐹)
5 reltpos 8230 . . . . . . . . 9 Rel tpos 𝐹
64, 5jctil 519 . . . . . . . 8 (Rel dom 𝐹 → (Rel tpos 𝐹 ∧ Rel dom tpos 𝐹))
7 relrelss 6262 . . . . . . . 8 ((Rel tpos 𝐹 ∧ Rel dom tpos 𝐹) ↔ tpos 𝐹 ⊆ ((V × V) × V))
86, 7sylib 218 . . . . . . 7 (Rel dom 𝐹 → tpos 𝐹 ⊆ ((V × V) × V))
98sseld 3957 . . . . . 6 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹𝑤 ∈ ((V × V) × V)))
10 elvvv 5730 . . . . . 6 (𝑤 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
119, 10imbitrdi 251 . . . . 5 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 → ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
1211pm4.71rd 562 . . . 4 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹)))
13 19.41vvv 1951 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹))
14 eleq1 2822 . . . . . . . 8 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹))
15 df-br 5120 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹)
16 brtpos 8234 . . . . . . . . . 10 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1716elv 3464 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1815, 17bitr3i 277 . . . . . . . 8 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1914, 18bitrdi 287 . . . . . . 7 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2019pm5.32i 574 . . . . . 6 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
21203exbii 1850 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2213, 21bitr3i 277 . . . 4 ((∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2312, 22bitrdi 287 . . 3 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)))
2423eqabdv 2868 . 2 (Rel dom 𝐹 → tpos 𝐹 = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)})
25 df-oprab 7409 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)}
2624, 25eqtr4di 2788 1 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2713  Vcvv 3459  wss 3926  cop 4607   class class class wbr 5119   × cxp 5652  ccnv 5653  dom cdm 5654  Rel wrel 5659  {coprab 7406  tpos ctpos 8224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-oprab 7409  df-tpos 8225
This theorem is referenced by:  tposoprab  8261
  Copyright terms: Public domain W3C validator