MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos3 Structured version   Visualization version   GIF version

Theorem dftpos3 8229
Description: Alternate definition of tpos when 𝐹 has relational domain. Compare df-cnv 5685. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos3 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem dftpos3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 relcnv 6104 . . . . . . . . . 10 Rel dom 𝐹
2 dmtpos 8223 . . . . . . . . . . 11 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
32releqd 5779 . . . . . . . . . 10 (Rel dom 𝐹 → (Rel dom tpos 𝐹 ↔ Rel dom 𝐹))
41, 3mpbiri 258 . . . . . . . . 9 (Rel dom 𝐹 → Rel dom tpos 𝐹)
5 reltpos 8216 . . . . . . . . 9 Rel tpos 𝐹
64, 5jctil 521 . . . . . . . 8 (Rel dom 𝐹 → (Rel tpos 𝐹 ∧ Rel dom tpos 𝐹))
7 relrelss 6273 . . . . . . . 8 ((Rel tpos 𝐹 ∧ Rel dom tpos 𝐹) ↔ tpos 𝐹 ⊆ ((V × V) × V))
86, 7sylib 217 . . . . . . 7 (Rel dom 𝐹 → tpos 𝐹 ⊆ ((V × V) × V))
98sseld 3982 . . . . . 6 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹𝑤 ∈ ((V × V) × V)))
10 elvvv 5752 . . . . . 6 (𝑤 ∈ ((V × V) × V) ↔ ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
119, 10imbitrdi 250 . . . . 5 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 → ∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
1211pm4.71rd 564 . . . 4 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹)))
13 19.41vvv 1956 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹))
14 eleq1 2822 . . . . . . . 8 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹))
15 df-br 5150 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹)
16 brtpos 8220 . . . . . . . . . 10 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
1716elv 3481 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1815, 17bitr3i 277 . . . . . . . 8 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1914, 18bitrdi 287 . . . . . . 7 (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝑤 ∈ tpos 𝐹 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2019pm5.32i 576 . . . . . 6 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
21203exbii 1853 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2213, 21bitr3i 277 . . . 4 ((∃𝑥𝑦𝑧 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝑤 ∈ tpos 𝐹) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧))
2312, 22bitrdi 287 . . 3 (Rel dom 𝐹 → (𝑤 ∈ tpos 𝐹 ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)))
2423eqabdv 2868 . 2 (Rel dom 𝐹 → tpos 𝐹 = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)})
25 df-oprab 7413 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ⟨𝑦, 𝑥𝐹𝑧)}
2624, 25eqtr4di 2791 1 (Rel dom 𝐹 → tpos 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ⟨𝑦, 𝑥𝐹𝑧})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  {cab 2710  Vcvv 3475  wss 3949  cop 4635   class class class wbr 5149   × cxp 5675  ccnv 5676  dom cdm 5677  Rel wrel 5682  {coprab 7410  tpos ctpos 8210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-oprab 7413  df-tpos 8211
This theorem is referenced by:  tposoprab  8247
  Copyright terms: Public domain W3C validator