Proof of Theorem bnj983
Step | Hyp | Ref
| Expression |
1 | | bnj983.1 |
. . . . . . . 8
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
2 | | bnj983.2 |
. . . . . . . 8
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
3 | | bnj983.3 |
. . . . . . . 8
⊢ 𝐷 = (ω ∖
{∅}) |
4 | | bnj983.4 |
. . . . . . . 8
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
5 | 1, 2, 3, 4 | bnj882 32806 |
. . . . . . 7
⊢
trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
6 | 5 | eleq2i 2830 |
. . . . . 6
⊢ (𝑍 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ 𝑍 ∈ ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
7 | | eliun 4925 |
. . . . . . 7
⊢ (𝑍 ∈ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ↔ ∃𝑓 ∈ 𝐵 𝑍 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
8 | | eliun 4925 |
. . . . . . . 8
⊢ (𝑍 ∈ ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ↔ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖)) |
9 | 8 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑓 ∈
𝐵 𝑍 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ↔ ∃𝑓 ∈ 𝐵 ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖)) |
10 | 7, 9 | bitri 274 |
. . . . . 6
⊢ (𝑍 ∈ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ↔ ∃𝑓 ∈ 𝐵 ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖)) |
11 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑓 ∈
𝐵 ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖) ↔ ∃𝑓(𝑓 ∈ 𝐵 ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖))) |
12 | 4 | abeq2i 2874 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐵 ↔ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
13 | 12 | anbi1i 623 |
. . . . . . . 8
⊢ ((𝑓 ∈ 𝐵 ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖)) ↔ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖))) |
14 | 13 | exbii 1851 |
. . . . . . 7
⊢
(∃𝑓(𝑓 ∈ 𝐵 ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖)) ↔ ∃𝑓(∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖))) |
15 | 11, 14 | bitri 274 |
. . . . . 6
⊢
(∃𝑓 ∈
𝐵 ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖) ↔ ∃𝑓(∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖))) |
16 | 6, 10, 15 | 3bitri 296 |
. . . . 5
⊢ (𝑍 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓(∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖))) |
17 | | bnj983.5 |
. . . . . . . . 9
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
18 | | bnj252 32582 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
19 | 17, 18 | bitri 274 |
. . . . . . . 8
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
20 | 19 | exbii 1851 |
. . . . . . 7
⊢
(∃𝑛𝜒 ↔ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
21 | 20 | anbi1i 623 |
. . . . . 6
⊢
((∃𝑛𝜒 ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖))) ↔ (∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
22 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑛 ∈
𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
23 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑖 ∈ dom
𝑓 𝑍 ∈ (𝑓‘𝑖) ↔ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖))) |
24 | 22, 23 | anbi12i 626 |
. . . . . 6
⊢
((∃𝑛 ∈
𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖)) ↔ (∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
25 | 21, 24 | bitr4i 277 |
. . . . 5
⊢
((∃𝑛𝜒 ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖))) ↔ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑍 ∈ (𝑓‘𝑖))) |
26 | 16, 25 | bnj133 32606 |
. . . 4
⊢ (𝑍 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓(∃𝑛𝜒 ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
27 | | 19.41v 1954 |
. . . 4
⊢
(∃𝑛(𝜒 ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖))) ↔ (∃𝑛𝜒 ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
28 | 26, 27 | bnj133 32606 |
. . 3
⊢ (𝑍 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓∃𝑛(𝜒 ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
29 | 2 | bnj1095 32661 |
. . . . . . 7
⊢ (𝜓 → ∀𝑖𝜓) |
30 | 29, 17 | bnj1096 32662 |
. . . . . 6
⊢ (𝜒 → ∀𝑖𝜒) |
31 | 30 | nf5i 2144 |
. . . . 5
⊢
Ⅎ𝑖𝜒 |
32 | 31 | 19.42 2232 |
. . . 4
⊢
(∃𝑖(𝜒 ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖))) ↔ (𝜒 ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
33 | 32 | 2exbii 1852 |
. . 3
⊢
(∃𝑓∃𝑛∃𝑖(𝜒 ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖))) ↔ ∃𝑓∃𝑛(𝜒 ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
34 | 28, 33 | bitr4i 277 |
. 2
⊢ (𝑍 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓∃𝑛∃𝑖(𝜒 ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
35 | | 3anass 1093 |
. . 3
⊢ ((𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) ↔ (𝜒 ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
36 | 35 | 3exbii 1853 |
. 2
⊢
(∃𝑓∃𝑛∃𝑖(𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) ↔ ∃𝑓∃𝑛∃𝑖(𝜒 ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
37 | | fndm 6520 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛) |
38 | 17, 37 | bnj770 32643 |
. . . . . . 7
⊢ (𝜒 → dom 𝑓 = 𝑛) |
39 | | eleq2 2827 |
. . . . . . . 8
⊢ (dom
𝑓 = 𝑛 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛)) |
40 | 39 | 3anbi2d 1439 |
. . . . . . 7
⊢ (dom
𝑓 = 𝑛 → ((𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) ↔ (𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
41 | 38, 40 | syl 17 |
. . . . . 6
⊢ (𝜒 → ((𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) ↔ (𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
42 | 41 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) → ((𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) ↔ (𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
43 | 42 | ibi 266 |
. . . 4
⊢ ((𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) → (𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖))) |
44 | 41 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖)) → ((𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) ↔ (𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖)))) |
45 | 44 | ibir 267 |
. . . 4
⊢ ((𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖)) → (𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖))) |
46 | 43, 45 | impbii 208 |
. . 3
⊢ ((𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) ↔ (𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖))) |
47 | 46 | 3exbii 1853 |
. 2
⊢
(∃𝑓∃𝑛∃𝑖(𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ (𝑓‘𝑖)) ↔ ∃𝑓∃𝑛∃𝑖(𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖))) |
48 | 34, 36, 47 | 3bitr2i 298 |
1
⊢ (𝑍 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓∃𝑛∃𝑖(𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ (𝑓‘𝑖))) |