MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eean Structured version   Visualization version   GIF version

Theorem eean 2340
Description: Distribute existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypotheses
Ref Expression
eean.1 𝑦𝜑
eean.2 𝑥𝜓
Assertion
Ref Expression
eean (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))

Proof of Theorem eean
StepHypRef Expression
1 eean.1 . . . 4 𝑦𝜑
2119.42 2225 . . 3 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝜓))
32exbii 1843 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
4 eean.2 . . . 4 𝑥𝜓
54nfex 2313 . . 3 𝑥𝑦𝜓
6519.41 2224 . 2 (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
73, 6bitri 275 1 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1774  wnf 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ex 1775  df-nf 1779
This theorem is referenced by:  eeanv  2341  reean  3309
  Copyright terms: Public domain W3C validator