| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.9d2r | Structured version Visualization version GIF version | ||
| Description: A deduction version of one direction of 19.9 2205 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| Ref | Expression |
|---|---|
| 19.9d2r.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 19.9d2r.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| 19.9d2r.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| 19.9d2r | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 19.9d2r.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | 19.9d2r.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | 19.9d2r.3 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 5 | 1, 2, 3, 4 | 19.9d2rf 32488 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-rex 3071 |
| This theorem is referenced by: xrofsup 32771 |
| Copyright terms: Public domain | W3C validator |