| Mathbox for Thierry Arnoux | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.9d2rf | Structured version Visualization version GIF version | ||
| Description: A deduction version of one direction of 19.9 2204 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) | 
| Ref | Expression | 
|---|---|
| 19.9d2rf.0 | ⊢ Ⅎ𝑦𝜑 | 
| 19.9d2rf.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| 19.9d2rf.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) | 
| 19.9d2rf.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | 
| Ref | Expression | 
|---|---|
| 19.9d2rf | ⊢ (𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.9d2rf.3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 2 | rexex 3065 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | rexex 3065 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐵 𝜓 → ∃𝑦𝜓) | |
| 4 | 3 | eximi 1834 | . . . 4 ⊢ (∃𝑥∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥∃𝑦𝜓) | 
| 5 | 1, 2, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → ∃𝑥∃𝑦𝜓) | 
| 6 | 19.9d2rf.0 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 7 | 19.9d2rf.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 8 | 6, 7 | nfexd 2328 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | 
| 9 | 8 | 19.9d 2202 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓)) | 
| 10 | 5, 9 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑦𝜓) | 
| 11 | 19.9d2rf.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 12 | 11 | 19.9d 2202 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜓)) | 
| 13 | 10, 12 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1778 Ⅎwnf 1782 ∃wrex 3059 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-rex 3060 | 
| This theorem is referenced by: 19.9d2r 32416 xrofsup 32699 | 
| Copyright terms: Public domain | W3C validator |