Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.9d2rf | Structured version Visualization version GIF version |
Description: A deduction version of one direction of 19.9 2201 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
Ref | Expression |
---|---|
19.9d2rf.0 | ⊢ Ⅎ𝑦𝜑 |
19.9d2rf.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
19.9d2rf.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
19.9d2rf.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
19.9d2rf | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9d2rf.3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
2 | rexex 3167 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥∃𝑦 ∈ 𝐵 𝜓) | |
3 | rexex 3167 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐵 𝜓 → ∃𝑦𝜓) | |
4 | 3 | eximi 1838 | . . . 4 ⊢ (∃𝑥∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥∃𝑦𝜓) |
5 | 1, 2, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → ∃𝑥∃𝑦𝜓) |
6 | 19.9d2rf.0 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
7 | 19.9d2rf.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
8 | 6, 7 | nfexd 2327 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
9 | 8 | 19.9d 2199 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓)) |
10 | 5, 9 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑦𝜓) |
11 | 19.9d2rf.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
12 | 11 | 19.9d 2199 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜓)) |
13 | 10, 12 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 Ⅎwnf 1787 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-rex 3069 |
This theorem is referenced by: 19.9d2r 30722 xrofsup 30992 |
Copyright terms: Public domain | W3C validator |