| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.9d2rf | Structured version Visualization version GIF version | ||
| Description: A deduction version of one direction of 19.9 2206 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| Ref | Expression |
|---|---|
| 19.9d2rf.0 | ⊢ Ⅎ𝑦𝜑 |
| 19.9d2rf.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 19.9d2rf.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| 19.9d2rf.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
| Ref | Expression |
|---|---|
| 19.9d2rf | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.9d2rf.3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
| 2 | rexex 3061 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥∃𝑦 ∈ 𝐵 𝜓) | |
| 3 | rexex 3061 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐵 𝜓 → ∃𝑦𝜓) | |
| 4 | 3 | eximi 1835 | . . . 4 ⊢ (∃𝑥∃𝑦 ∈ 𝐵 𝜓 → ∃𝑥∃𝑦𝜓) |
| 5 | 1, 2, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → ∃𝑥∃𝑦𝜓) |
| 6 | 19.9d2rf.0 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 7 | 19.9d2rf.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 8 | 6, 7 | nfexd 2328 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) |
| 9 | 8 | 19.9d 2204 | . . 3 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓)) |
| 10 | 5, 9 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑦𝜓) |
| 11 | 19.9d2rf.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 12 | 11 | 19.9d 2204 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜓)) |
| 13 | 10, 12 | mpd 15 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 Ⅎwnf 1783 ∃wrex 3055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-rex 3056 |
| This theorem is referenced by: 19.9d2r 32406 xrofsup 32698 |
| Copyright terms: Public domain | W3C validator |