| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eu2ex | Structured version Visualization version GIF version | ||
| Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| 2eu2ex | ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2577 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑) | |
| 2 | euex 2577 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-eu 2569 |
| This theorem is referenced by: 2eu1 2651 2eu1v 2652 |
| Copyright terms: Public domain | W3C validator |