|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2eu2ex | Structured version Visualization version GIF version | ||
| Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) | 
| Ref | Expression | 
|---|---|
| 2eu2ex | ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | euex 2576 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑) | |
| 2 | euex 2576 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
| 3 | 2 | eximi 1834 | . 2 ⊢ (∃𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) | 
| 4 | 1, 3 | syl 17 | 1 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1778 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-eu 2568 | 
| This theorem is referenced by: 2eu1 2650 2eu1v 2651 | 
| Copyright terms: Public domain | W3C validator |