MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu2ex Structured version   Visualization version   GIF version

Theorem 2eu2ex 2675
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 2596 . 2 (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑)
2 euex 2596 . . 3 (∃!𝑦𝜑 → ∃𝑦𝜑)
32eximi 1797 . 2 (∃𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
41, 3syl 17 1 (∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1742  ∃!weu 2583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772
This theorem depends on definitions:  df-bi 199  df-an 388  df-ex 1743  df-eu 2584
This theorem is referenced by:  2eu1  2682  2eu1OLD  2683
  Copyright terms: Public domain W3C validator