Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eu2ex | Structured version Visualization version GIF version |
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eu2ex | ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2577 | . 2 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃!𝑦𝜑) | |
2 | euex 2577 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
3 | 2 | eximi 1837 | . 2 ⊢ (∃𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
4 | 1, 3 | syl 17 | 1 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-eu 2569 |
This theorem is referenced by: 2eu1 2652 2eu1v 2653 |
Copyright terms: Public domain | W3C validator |