![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2eu1 | Structured version Visualization version GIF version |
Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 23-Apr-2023.) |
Ref | Expression |
---|---|
2eu1 | ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2eu2ex 2700 | . . . . 5 ⊢ (∃!𝑥∃!𝑦𝜑 → ∃𝑥∃𝑦𝜑) | |
2 | moeu 2630 | . . . . . . . 8 ⊢ (∃*𝑦𝜑 ↔ (∃𝑦𝜑 → ∃!𝑦𝜑)) | |
3 | 2 | albii 1805 | . . . . . . 7 ⊢ (∀𝑥∃*𝑦𝜑 ↔ ∀𝑥(∃𝑦𝜑 → ∃!𝑦𝜑)) |
4 | euim 2671 | . . . . . . 7 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥(∃𝑦𝜑 → ∃!𝑦𝜑)) → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑)) | |
5 | 3, 4 | sylan2b 593 | . . . . . 6 ⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑)) |
6 | 5 | ex 413 | . . . . 5 ⊢ (∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑))) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (∃!𝑥∃!𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑))) |
8 | 7 | pm2.43b 55 | . . 3 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥∃𝑦𝜑)) |
9 | 2euswap 2702 | . . . 4 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑)) | |
10 | 8, 9 | syld 47 | . . 3 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑦∃𝑥𝜑)) |
11 | 8, 10 | jcad 513 | . 2 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑))) |
12 | 2exeu 2703 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∃!𝑥∃!𝑦𝜑) | |
13 | 11, 12 | impbid1 226 | 1 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1523 ∃wex 1765 ∃*wmo 2576 ∃!weu 2613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 |
This theorem is referenced by: 2eu2 2710 2eu3 2711 2eu3OLD 2712 2eu5OLD 2715 |
Copyright terms: Public domain | W3C validator |