| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eumo | Structured version Visualization version GIF version | ||
| Description: Nested unique existential quantifier and at-most-one quantifier. (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| 2eumo | ⊢ (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euimmo 2616 | . 2 ⊢ (∀𝑥(∃!𝑦𝜑 → ∃*𝑦𝜑) → (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)) | |
| 2 | eumo 2578 | . 2 ⊢ (∃!𝑦𝜑 → ∃*𝑦𝜑) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃*wmo 2538 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |