Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eumo | Structured version Visualization version GIF version |
Description: Nested unique existential quantifier and at-most-one quantifier. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eumo | ⊢ (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euimmo 2618 | . 2 ⊢ (∀𝑥(∃!𝑦𝜑 → ∃*𝑦𝜑) → (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)) | |
2 | eumo 2578 | . 2 ⊢ (∃!𝑦𝜑 → ∃*𝑦𝜑) | |
3 | 1, 2 | mpg 1800 | 1 ⊢ (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 df-eu 2569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |